Demystifying Artificial Intelligence

Instructor: Devin Bristow

Artificial Intelligence

What is Artificial
Intelligence?

Definition

Artificial — “lacking in natural
or spontaneous quality.” (Merriam-Webster)

Intelligence — “the ability to learn or
understand or to deal with new or trying
situations.” (Merriam-Webster)

Definition

Artificial Intelligence — “A branch of computer science
dealing with the simulation of intelligent behavior in
computers.” (Merriam-Webster)

Definition

Artificial Intelligence —
Intelligence used by machinery.
(Devin Bristow)

Video

Link:

https://www.youtube.com/watch?v=clFqS2r
MG3g&ab channel=Freethink

https://www.youtube.com/watch?v=clFqS2rMG3g&ab_channel=Freethink

A (Short) History of Al

1940-1950: Early days
= 1943: McCulloch & Pitts: Boolean circuit model of brain
= 1950: Turing's “Computing Machinery and Intelligence”

1950—70: Excitement: Look, Ma, no hands!

= 1950s: Early Al programs, including Samuel's checkers program,
Newell & Simon's Logic Theorist, Gelernter's Geometry Engine

= 1956: Dartmouth meeting: “Artificial Intelligence” adopted
= 1965: Robinson's complete algorithm for logical reasoning

1970—90: Knowledge-based approaches
= 1969—79: Early development of knowledge-based systems
= 1980—88: Expert systems industry booms
= 1988—93: Expert systems industry busts: “Al Winter”

1990—: Statistical approaches
= Resurgence of probability, focus on uncertainty
= General increase in technical depth
= Agents and learning systems... “Al Spring”?

2000—: Where are we now? Where are we headed?

What Can Al Do?

Quiz: Which of the following can be done at present?

\'4 Play a decent game of table tennis?

v Play a decent game of Jeopardy?

Vv Drive safely along a curving mountain road?

“® Drive safely along Telegraph Avenue?

v Buy a week's worth of groceries on the web?

X Buy a week's worth of groceries at Berkeley Bowl?

“® Discover and prove a new mathematical theorem?

X converse successfully with another person for an hour?
“® Perform a surgical operation?

Vv Put away the dishes and fold the laundry?

Vv Translate spoken Chinese into spoken English in real time?
X Write an intentionally funny story?

Subject

UNDERSTANDING
ARTIFICIAL
INTELLIGENCE

AS A SUBJECT
I\

Mathematics

= Complexity Theory

= Linear Algebra
= Probability

Computer Science

Graph Theory

Algorithms
Data Structures
Alan Turing
Logic

Prolog

Python

Course Overview

= Psychology

Behavior

= Conscioushess
= Understanding

= Neuroscience

Parts of the Brain

= Artificial Intelligence

Artificial Neural Networks
Machine Learning

Deep Learning
Reinforcement Learning
Bayesian Networks

= Applications

Virtual Reality
Augmented Reality
Robotics

Gaming

Voice Recognition

Natural Language
Processing

Course Overview

Mathematics

Complexity Theory

Big O, Big (), Big 0; Efficiency of algorithms

Linear Algebra

Vectors, Matrices

Probability

Probabilistic models, Distributions, Error functions, Expectations

Graph Theory
Nodes, Edges, Directed, Weighted, Cyclic

Course Overview

Computer Science

Algorithms

Greedy, Heuristics, Search

Data Structures

Arrays, Trees, Graphs

Alan Turing

Turing Machines, Turing Tests

Logic
Propositional Logic, Predicate Logic, Truth Tables

Course Overview

Computer Science

Prolog
Facts, Rules, Queries, Syntax, Structs, Arithmetic Operations, etc.

Python
Strings, Variables, Data Types, if-statements, for-loops, etc.

Course Overview

Psychology

Behaviors

Neural Communication

Consciousness
Dual-Track Mind

Understanding
Thinking, Learning, Intelligence, Language and Memory

Course Overview

Neuroscience

Parts of the Brain

= Cerebral cortex

Frontal lobe

Occipital lobe

Parietal lobe

Temporal lobe

Course Overview

Artificial Intelligence

Artificial Neural Networks

Perceptrons

Machine Learning

Supervised Learning, Unsupervised Learning; Evaluating Regression

Deep Learning

Feedforward and Backward Propagations, Gradient Descent

Reinforcement Learning

Agents, Environment, Action, Rewards (“A EAR”)

Course Overview

Artificial Intelligence

Bayesian Networks

Decisions; Accuracy

- - .,. . .
o s * > ’ /

X ' i

Course Overview

Applications

Virtual Reality

Interaction, Immersion, Imagination; Simulation

General Comments

Augmented Reality
Robotics

Gaming

Voice Recognition

Natural Language Processing

Let’s dive right in!

Complexity Theory

What is
Complexity
Theory?

Complexity Theory

For computers:

" Some problems
are easy.

" Some problems
are hard.

Complexity Theory

Complexity Theory

Time decides difficulty

-2

Complexity Analysis

N5/
~ 7’
7’ ~

Complexity Analysis

Polynomial-Time (P)

Those problems that can be solved in time O(n*) for some
constant integer k.

Complexity Analysis

Non-deterministic Polynomial-Time (NP)

These problems are ones in which an algorithm can guess a
solution and end up verifying whether the guess was
correct in polynomial time.

Complexity Analysis

Open-Question
Does P = NP?

Complexity Theory

Problems are
one thing;

Solving them is
another.

Algorithms

To solve problems, we’ll need a
sequence of steps to follow.

This is known as an algorithm.

Algorithms

There are many
ways to solve the
same problem.

Algorithms

The best way to solve a
problem is said to be the
most efficient way.

Time Complexity

We use a particular
metric to determine an
algorithm’s efficiency.

Time Complexity

Time Complexity

Pronounced ‘Big Oh.’

Big O is the metric we use to
determine an algorithm’s efficiency.

Time Complexity

Time Complexity is about the
amount of time it takes for an
algorithm to be completed.

Time Complexity

Imagine this scenario

N
S -~

Time Complexity

You have a file on a
hard drive.

Time Complexity

You need to send your
file to a friend ASAP.

Time Complexity

Your
friend
lives
across
the
country.

Time Complexity

Here’s the question:

How should you send
your friend the file?

Time Complexity

Popular Answers:

1. Email
2. File Transfer Protocol (FTP)
3. Other electronic means

Time Complexity

Are those answers right or
wrong?

Time Complexity

They are half right.

Time Complexity

If the file is small, then
those answers are
correct.

Time Complexity

It would take 5 hours to
hop on a flight and
send the file.

Time Complexity

BUT...

What if the file was really large?

Time Complexity

If the file was large, then it
would be faster to send it by
airplane!!!

Time Complexity

This is what the concept of Big O,
or 'asymptotic runtime’ is about.

Time Complexity

Data transfer "algorithm” runtime
can be described as follows:

=0(s)
"O(1)

Time Complexity

O(s) is Electronic transfer.
The letter ‘s’ stands for the size of
the file.

Time Complexity

O(s) means the time to transfer
the file increases linearly as the
size of the file increases.

Time Complexity

O(1) is Airplane transfer.
The number 1 is a fixed number.

>>§£

Time Complexity

O(1) means as the size of the file
increases, it won’t take you any
longer to get the file to your
friend.

Time Complexity

’

/’3@

’
’
y

[Figure 1: O(s) vs. O(1)]

Time Complexity

There are plenty more runtimes
than O(s) and O(1).

Time Complexity

Other examples of runtimes:

="0O(n)
.O(Zn) pEEe————

e e
e =7

"O(log(n)) -

Time Complexity

Runtime graphs

O(n!) O(c") O(n°)

A | |
O(n!),0(c"),0(n%)-Worst
Running Time O(nlogn)-Bad
Complexity .
in terms of O(nlogn) O(n)-Fair
Big-O O(logn)-Good
O(f(n)) O(1) - Best
2 3 O(n)
O(logn)

Input Size n |

Time Complexity

Big O example:

a[0]
a[1]

. al[2]
Array: it
al4]
al5]
a[6]
al7]

Time Complexity

Array — “a number of things
considered as a unit.” (Merriam-
Webster)

Time Complexity

Array — “A collection of values.”
(Devin Bristow)

Time Complexity

Big O example:

An algorithm that prints all the
values in an array is done in O(n).

Time Complexity

We can think of Big O as an
upper bound.

Time Complexity

/

You cannot walk
higher than the T
tip of this &
mountain.

Time Complexity

There’s another metric.

Time Complexity

Time Complexity

This metric is called Big ()
(pronounced ‘Big Omega’).

We can think of Big () as a
lower bound.

Time Complexity

You cannot go
below the ground.

L

Time Complexity

One last metric.

Time Complexity

Time Complexity

This metric is called Big 6
(Pronounced ‘Big Theta’).

We can think of Big 8 as a tight
bound.

Time Complexity

Tight bound Upper bound
e A Tight bound
Lower bound —\
/

The hamburger sits in
between two buns.

Space Complexity

Some algorithms require
machines with lots of space.

Space Complexity

The amount of memory or
space needed to complete an
algorithm is called Space
Complexity.

Space Complexity

Example:

Suppose we created an array
of size n.

Space Complexity

Then that array would require
O(n) of space to run.

Linear Algebra

Linear Algebra

What is
Linear Algebra?

Definition

Linear — “... having a graph that is a line and
especially a straight line : STRAIGHT.”
(Merriam-Webster)

Algebra — “a generalization of arithmetic in
which letters representing numbers are
combined...” (Merriam-Webster)

Linear Algebra

Linear Algebra is about
arithmetic that produces
straight lines.

Linear Algebra

When we say arithmetic, we

mean.
= Adding
" Subtracting
" Multiplying
= Dividing

Linear Algebra

Linear Algebra is the study of
linear equations.

Linear Algebra

An equation is any statement
with an equals (=) sign.

Linear Algebra

Linear equations produce
straight lines.

Linear Algebra

Examples of Linear Equations:
my=2X A 2

ly:)(+3 \ : &
ly:l \

Linear Algebra

Let’s see how to produce straight
lines from linear equations.

To do so, we’ll use desmos.com

Linear Algebra

Exercise

Graph the equation y = x+3

Linear Algebra

Make a table:

Input (x) Output (y = x + 3)
X =-2 y=-2+3=1
x=-1 y=-1+3=2
x=0 y=0+3=3
X=1 y=1+3=4
X=2 y=2+3=5

Linear Algebra

Use values on table to plot the
graph of y=x+3.

Linear Algebra

Same graph,

just zoomed

out more

Linear Algebra

General form of a Linear
Equation:

y=ax+b

Linear Algebra

‘@’ and ‘b’ are numbers.
‘x" and ‘y’ are variables.

Linear Algebra

In the equationy =x + 3,

Linear Algebra

In the equationy =2x + 5,

Linear Algebra

Another general form of a
linear equation:

ax +by=c

Linear Algebra

‘a’, ‘b’, and ‘c’ are numbers.
‘x" and ‘y’ are variables.

Linear Algebra

In the equation -4x + 5y = 10,
a=-4
b=5
c=10

Linear Algebra

-4x + 5y = 10 is another
equation that produces a
straight line.

Linear Algebra

To see this, we must ‘solve for y.’
—4x + 5y = 10 (Write down original equation)

5y = 4x + 10 (Add ‘4x’ to both sides of
of the equation).

4x + 1
o ; 0 (Divide both sides by 5)

Linear Algebra

When we say, "solve fory,”

This means get ‘y’ to be alone.

Linear Algebra

Exercise
Graph the equations:

"—4x + 5y =10

. _4x+10
Y=

Use values on table to plot the

)l

v

//

4

0

Y

"—4x +5y=1

Linear Algebra

graphs.

)l

/

Linear Algebra

The moral of the story is:

We want straight lines.

Linear Algebra

If a graph is not straight, we say
it’s non-linear.

—

Linear Algebra

Equations with straight lines are
nicer to play with.

Linear Algebra

Exercise: try solving fory

(PR AL

! | I | N LI L1 & [FAD
1 W .L'H‘ [RHIT T
\ \ ' \xl i N L) R
Ah [,) i | Ll el
m } I II':‘ "5 I& ."ih
- | | | "":" Ly, 1
f‘\wﬁ \ PN / W\l""wﬂ?
AT Bls: -
V4 N Tt T,]
A 0N e]
N ik
L . 0 ‘_\\ i‘ P ; :.J".’Tﬁ
' " AHF—I'F.:_v kl.i.-':
] il 2 l ['- =. Ht ". - ':

\J] . s .
AT R
A %\A Vs LOL!
| ' - HHE)
| AF !‘u;’;n .h?." :_;

N
. \\
S N

Matrices

Linear equations can be
represented using a matrix.

Matrices

A matrix is a rectangular array of
numbers.

Aj1 A1 Ags
A=|A1 Ay, 4,3

A3,1 A3,2 A3,3

Matrices

A matrix consists of rows and
columnes.

Matrices

Matrix A has 3 rows and 3
columns. It's a 3 X3 matrix.

Aj1 A1 Ags
A=|A1 Ay, 4,3

A3,1 A3,2 A3,3

Matrices

Rows are horizontal

Columns are vertical

Matrices

Like numbers, we can add
matrices:

w45=G D6 96 7

Matrices

Like numbers, we can multiply
matrices by whole numbers:

24=2-(; 3)=(; o)

Matrices

We can multiply matrices
together:

((1)(3) +(3)(7) (LA +(3)(8))
(2)B)+®)(7) (2)(4) + (4)(8)

G4 40)

5=,)G o)

Matrices

General example:

e f ae + bg| af + bh

X o
g h ce +dg| cf + dh

B C

Matrices

Another example:

X
1
m O
X X X
alala

Matrices

There’s something called the
determinant of a matrix.

det (5)= D@ -G
=4 -6
= -2

Matrices

Finding the determinant of a
matrix is similar to finding the
volume of an object.

Matrices

We can take the inverse of a

matrix.
-1 1 _
G 421) =(1)(4)—(2)(3)'(—43 12)
=ﬁ'(—43 _12)

4 2
1(4 _2)= _E ___2 = _32 11
-2 \-3 1 3 _1 S T3

-2 2

Matrices

As you can see, matrices can
achieve a lot!

They can help us achieve another
thing: organization.

Matrices

Matrices help us organize
linear (system of) equations!

2x + 3y =1 ’, 3 1
8x —2y =5 « 2 (8 2 5)

Ox +7y =6 07 6

Vectors

Let’s switch gears.

Vectors

In linear algebra,
there are objects
called vectors.

Vectors

What is a vector?

Vectors

There’s three ways to think
of a vector.

P

Physics Mathematics Computer Science

Vectors

Physicists think of vectors as
an arrow with a tip at the end.

/

This arrow denotes direction.

Vectors

Computer scientists think of
vectors as a matrix.

()

This matrix denotes position.

Vectors

By position, we mean the
point. For example:

(%) equals the point (1, 2)
on the xy-plane.

Vectors

Mathematicians think of
vectors as elements.

%

In mathematics, vectors are a
generalized idea.

Vectors

In mathematics, we do
things like:

Vectors

Vectors give us an
intuitive notion of
distance and
direction.

Vectors

Suppose a turtle was

. C (3.4)
crawling up an incline.

(0,0) (0,4)

Vectors

The point (0,0) can be rewritten as (8)

The point (0,4) can be rewritten as (Z) (3’4)
The point (3,4) can be rewritten as (ABL)
(0,0) (0,4)

Vectors

We can use vectors to solve
several kinds of problemes.

Vectors

Suppose X and y is a vector.

Then we can add them together.
So like x + y.

Vectors

Suppose X is a vector, and a is a
scalar (or a number).

Then we can multiply them
together.

Vectors

Example:
a-x

Vectors

Vectors are not numbers. But
they can include numbers, e.g.

X =<3,4>
=<0,2>

<

Vectors

Let’s add these two vectors
together:

X =<3,4>
=<0,2>

<

Vectors

X+y =<3,4> + <0,2>
= <3+0, 4+2>
= <3,6>

Vectors
Let’s multiply them: a - X

X =<3,4>
a=>5

Vectors

Let’s multiply them: a - X
a-x=5-<3,4>
=<5-3, 54>
= <15, 20>

Vectors

In general, we can write vectors
like this:

—

X=<X1,X2,..,Xp”
where x4, X5, ..., X, are numbers.

Vectors

We can also take the length of
vectors.

Vectors

We can also take the length of
vectors.

(1,2) (1

= 2)=<1,2>:Y

Vectors

The length of a vector is written
in this form:

—

| x|

Vectors

fx=<12>
Then:
%] = /12 + 22

-5

Vectors

Note: You cannot multiply two
vectors!

Wy

Vectors

But you can do something else.
You can take their dot product.

Vectors

The dot product is not
multiplication in the sense of
numbers.

%y

Vectors
Example:
X =<3,4>
y =<0,2>

Xy = (3X0) + (4x2)
— 8

Vectors

In general, we can write the dot
product of two vectors like this:

7'5’):2%‘)’1‘

l

Probability

Probability

Imagine this scenario

N

o

Probability

Suppose you had a coin.

Probability

The coin has two sides:
mHeads
= Tajls

Probability

If you flip the coin 10 times, how
many times would it land on
Heads?

Probability

How many times would it land on
Tails?

Probability

What if you flipped it 100 times?

How many times would it land on
Heads? What about Tails?

Probability

Now...

What if you flipped the coin
10,000 times? How many times
would it land on Heads or Tails?

Probability

The answer to these questions is
this:

We do not know with 100% certainty which

side a coin will land on in 10,000, 100, 10, or
even 1 try.

Probability

But...

We can take a really good guess as
to how many times the coin will
land on Heads or Tails.

Probability

Because certainty is out of the
guestion, it makes sense to ask
another question.

Probability

Here’s a better question: What’s
the likelihood that the coin will
land on Heads or Tails?

Probability

If the coin is flipped one time, the
likelihood that the coin will land
on Heads is 50%.

Probability

Likewise, if the coin is flipped one
time, the likelihood that the coin
will land on Tails is 50%.

Probability

Why do we know this?

Answer: Probability

=

Probability

If we flipped a coin once, what is the
likelihood it will land on Heads?

Number of outcomes to get Heads
Pr{Heads} =

Number of possible outcomes

1
T2

=.50 = 50%

Probability

If we flipped a coin twice, what is the
likelihood it will land on Heads?

Number of outcomes to get Heads
Pr{Heads} =

Number of possible outcomes

2
T4

=.50 = 50%

Probability

Sometimes, events happen at the
same time.

Probability

Other times, they do not happen
at the same time.

Probability

If two events don’t happen at the
same time, they are said to be
mutually exclusive.

Probability

Mutually Exclusive Events

A B

P(A or B) = P(A) + P(B)

Probability

If A and B are mutually exclusive
events, then the probability
of A happening OR the probability
of B happening is P(A) + P(B).

Probability

Example:

If we toss a coin, either Heads or
Tails might turn up, but not Heads
and Tails at the same time.

Probability

Another way to write
P(A or B) = P(A) + P(B)
1S

P(A U B)=P(A) + P(B)

Probability

If A and B are non-mutually
exclusive events, then the
probability of A happening OR the
probability of B happening is:

P(A or B) =P(A) + P(B) — P(A and B).

Probability

Non-Mutually Exclusive Events

A B

P(A or B) = P(A) + P(B) — P(A and B)

Probability

Another way to write
P(A or B) = P(A) + P(B) — P(A and B)
1S

P(A U B) = P(A) + P(B) — P(A N B)

Probability

Probabilistic models consist of a
sample space of mutually
exclusive possible outcomes,
together with a probability for
each outcome.

Probability

Example:

In @ model of the weather
tomorrow,

The outcomes might be sunny,
cloudy, rainy, and snowy.

Probability

A subset of these outcomes is
called an event.

<>

Probability

For example:

The event of precipitation is the
subset consisting for {rainy,
SNOWY}.

Probability

Now onto Distributions

Probability

Distributions describe the
relationship of observations in a
sample space.

’

Probability

There are several kinds of
distributions.

= Frequency Distributions
= Probability Distributions
= Normal Distributions

= Binomial Distributions

= Etc.

Probability

Distributions are described by
density functions.

Probability

Density functions describe the
likelihood of the proportion of
observational changes in a
distribution.

Probability

We will take a look at the most
popular distribution:

Normal distributions.

Probability

Normal Distributions have two
parameters:

"Mean (u)
sStandard Deviation (o)

Probability

Normal Distribution:

~

/

N

068.3%
®27.2%
0 4.2%
0 0.2%

mM—30 u—20 u—o] mw+o pu+ 20 pu+ 30

Probability

Normal Distribution:

68% of data is within 1 standard

068.3% deviation of the mean pu.
0 27.2%

® 4.2) cr
% 95% of data is within 2 standard
O 0.2% .
deviations of the mean pu.
u — 3o p;Za nw—o l—" uw—+ o u—I;2a u+ 3o ” 997% Of data |S W|th|n 3Standard

deviations of the mean pu.

Probability

Normal Distribution:

Being 1 standard deviation of the

068.3% meanis u + o.
@®27.2%
® 4.2 . .
4 Being 2 standard deviations of the
O 0.2% :
meanis u * 20.
h—Sen-20 n—o # nto nizenise Being3 standard deviations of the

mean is U + 30.

Probability

Example: Test Scores

Average score: 85%
81% /\89%

93%
85% 97%

.
>

w—30 u—20 u—o [mw+o pu+ 20 pu+ 30

Graph Theory

Graph Theory

Graphs in graph theory are different
from the graphs you’ve been
previously exposed to.

Graph Theory

Constant Function: f(x) = 2

A

Identity: f(x) = x

Absolute Value: f(x) = Ixl

-axis

>
0 X-axis

\J

Quadratic: f(x) = x?

o= swermw-s @rAPHSin
il ' Algebra and
Calculus:

Cube Root: f(x) = 3 Reciprocal: f(x) = 1/x Rseghpa[?gf'; f(x) = 1/x?
A "
< =4l
® ||
= >\

>
0 X-axlIs

Graph Theory

Graphs in
Graph
Theory:

Graph Theory

A closer example of a graph in Graph Theory

A
S

Graph Theory

Geometric intuition behind graphs in graph theory.

Graph Theory

A graph consists of:
= vertices (dots)
" edges (lines)

Graph Theory

Graphs can be undirected or directed.

(a) Undirected Graph) Directed Graph

\,\.
S
.
\-\.

Graph Theory

Graphs can be cyclic or acyclic.

Cyclic Acyclic

Graph Theory

Graphs can be weighted (or unweighted).

10

Algorithms

Heuristic Algorithms

A Heuristic is a technique to solve a problem faster
than classic methods, or to find an approximate
solution when classic methods cannot.

.\

T4
) '\ D \Q Aﬁ Y

/ .

Heuristic Algorithms

This is a kind of shortcut as we
often trade one of optimality,
completeness, accuracy, or
precision for speed.

Heuristic Algorithms

So why do we need heuristics?

Heuristic Algorithms

One reason is to produce, in a reasonable
amount of time, a solution that is good enough
for the problem in question.

A

Heuristic Algorithms

It doesn’t have to be the best—an approximate
solution will do since this is fast enough

Greedy Algorithms

Greedy algorithms are an approach to
solving certain kinds of optimization
problems.

Greedy Algorithms

A greedy algorithm is an approach for solving a problem by
selecting the best option available at the moment, without
worrying about the future result it would bring. In other words,
the locally best choices aim at producing globally best results.

Greedy Algorithms

A greedy algorithm builds a solution by going
one step at a time through the feasible
solutions, applying a heuristic to determine
the best choice.

Greedy Algorithms

A heuristic applies an insight to solving
the problem, such as always choose the
largest, smallest, etc.

Search Algorithms

The main purpose of searching
algorithms is to check an element or
retrieve it from any data structure.

Search Algorithms

These searching algorithms are classified
into two different parts generally based
on the type of searching:

Sequential search: List or array is traversed sequentially and every element is
checked. (e.g.: Linear Search)

Interval search: Designed for sorted data structures and more efficient than

sequential search algorithms as these are repeatedly target the center of the data
structure and divide the search space in half. (e.g.: Binary Search)

Linear Search

Find '20'

Linear Search

This algorithm is a very simple algorithm. Here, a
sequential search is made throughout every
element in the data structure one by one.

Linear Search
Find '20'

N T

Linear Search

If the match is found, it is returned otherwise
searching process continues until the end of
the data structure.

Linear Search
Find '20'

N T

Binary Search

Search 23

23>16
take 2" half

23> 56
take 15t half

Found 23,
Return 5

Binary Search

3

4

5

6

12

16

23

38

3

M=4

5

6

12

16

23

38

3

4

L=5

6

12

16

23

38

3

4

H=6

12

16

23

38

Binary Search

This is a fast searching algorithm of the
runtime complexity of O(log N).

Binary Search

4 5 6 Vi

2 s [s [12[16 @8] se] 50 2 s1

Binary Search

The data collection should be in the sorted
form in order to work this algorithm correctly.

Binary Search

3 4 5 6 Vi

2 s [s [12[16 @8] se] 50 2 s1

Binary Search

How does Binary Search work?

Binary Search

2 3 4 5 6 Vi

s [2] s To iz sz [se 2 lor

mm-nnmmam%nm

6 M=7 38 =

4
8% [2[5 s [12]10]2 a8 66 2] o1

3 4 L=5M=5 H=6 7 8

2% (2[5 [o [12[16 @ s8] 56 [72] 1]

Found 23,

Binary Search

Binary search looks for a particular item by
comparing the middlemost item of the collection.

Binary Search

0 1 2 3 4 5 6 Vi

ﬂ

-nnmmam%nm
--nummamnm

3 4 L=5M=5 H=6 7 8

5 [s [12] 16 28] 386 72] o1

Binary Search

If a match occurs, then the index of the
item is returned.

Binary Search

2 3 4 5 6 Vi

s [2] s To iz sz [se 2 lor

%% (2[5 [[12 4623 s8]0

6 M=7 38 =

4
8% [2[5 s [12]10]2 a8 66 2] o1

3 4 L=5M=5 H=6 7 8

2% (2[5 [o [12[16 @ s8] 56 [72] 1]

Found 23,

Binary Search

If the match does not occur, it checks whether the middle
item is greater than the item, then the item is searched in the
sub-array to the left of the middle item.

Binary Search

2 E] 4 5 6 Vi
s [2] s To iz sz [se 2 lor
3 5 8
wm-nnmmam%nm

6 M=7 8 =

4
8% [2[5 s [12]10]2 a8 66 2] o1

3 4 L=5M=5 H=6 7 8

R0t 25 [e [12] e [eaf s8] se] 72] o1]

Found 23,

Binary Search

Otherwise, the item is searched for in the sub-
array to the right of the middle item.

Binary Search

3 4 5 6 Vi

2 s [s [12[16 @8] se] 50 2 s1

Binary Search

Until the subarray size reduces to zero this
process continues on the sub-array as well.

Binary Search

3 4 5 6 Vi

2 s [s [12[16 @8] se] 50 2 s1

Alan Turing

Known as The Father of Modern
Computer Science

Alan Turing

Alan Turing was an amazing
mathematician of the 20t century. He
solved all sorts of problems!

Alan Turing

He’s very well known for his
development of a Turing Machine.

[P

Alan Turing

A Turing Machine is an abstract
machine which manipulates symbols
on a strip of tape according to a table

of rules.

Alan Turing

so known for what

ed the Turing Test.

Alan Turing

The Turing Test is a test of a machine's
ability to exhibit intelligent behavior
equivalent to, or indistinguishable
from, that of a human.

Python

Python
Programming
Language

Python

What is Python?

Python is a high-level and general-
purpose programming language.

Python

?rogramiz

Programiz is an online compiler

Python

We will use Programiz to
compile code in Python.

Python

We're going to look at a few examples
of how programming is done.

Python

Programs we wrote:
" Print ‘Hello World/!’
" Added numbers
" Concatenated symbols
" |nitialized variables

" Imported Packages

Python

Programs we wrote:

" Allow the user to enter descriptions of four
different types of shapes and ultimately
output the perimeter/circumference and
area of the figures.

Python

Elements of Programming
In Python

Python

Programming in Python
To program in Python, you need to:

" Compose a program by typing it into a file
named, say, myprogram.py.

" Run (or execute) it by typing “python
myprogram.py’ inthe terminal window.

S W N R

Python

Sample program in Python

Import stdio

Write ‘Hello, World’ to standard output.
stdio.writeln(‘Hello, World')

Python

Analysis of the program
Line 1 contains an import statement.

That statement tells Python that
you 1ntend to use the features
defined in the stdio module
(also known as: stdio.py)

Python

Analysis of the program

Line 2 is a blank line. Python ignores blank
lines!

Python

Analysis of the program

Line 3 contains a comment which serves to document
the program.

In Python, a comment begins with the ‘#’ character
and extends to the entire end of the line.

Pvthon ignores comments.

Python

Analysis of the program

Line 4 is the heart of the program. It is the statement
that calls the stdio.writeln () function to write
one line with the given text on it.

Python

Built-In Types of Data

A data type is a set of values and a set of operations
defined on those values.

Examples of built-in data types are int (for integers),
float (for floating-point numbers), str (for
sequences of characters) and bool (for true-false

values).

Python

Built-In Types of Data

Type set of values common operators sample literals

int integers +-% /] 9% ¥* 99 12 2147483647
float float-point numbers + -k [xE 3.14 2.5 6.022e23
bool true-false values and or not True False

str sequences of characters + ‘AB” ‘Hello” ‘2.5’

Python

More terminology

o o

Python

Sample Code

1234
99
a + b

Python

Terms

The code creates:

Three objects (each of type int)
Literals— 1234 and 99
Expression—a + b

Python

Terms

Literal: A Python-code representation of a
data-type value.

Operators: A Python-code representation of a
data-type operation. For example, uses + and
* to represent addition and multiplication.

Python

Terms

The code binds variables a, b, and c to those
objects using assignment statements.

The end result is that variable c is bound to an
object of type int whose value is 1333.

Python

Objects

All data values in a Python program are represented
by objects and relationships among objects.

An object is an in-computer-memory representation
of a value from a particular data type.

Python

Objects

Objects are characterized by three qualities:

" |dentity — Uniquely identifies the object.
= Type — Completely specifies its behavior.

= Value — Is the data-type value that it represents.

Python

Objects

Each object stores one value. For example:

An object of type int can store the value 1234 or
the value 99 or the value 1333.

OR
An object of type str can store the value ‘hello.’

Python

Variables

A variable is a name for an object reference.
T &

Variable name Object reference Object

Python

Expressions

An expression is a combination of literals,
variables, and operators.

Operands (and expressions)

— . T~

|

Operator

4 (x-3)

Python

Assignment Statements

An assignment statement is a directive to Python to
bind the variable on the left side of the = operator to
the object produced by evaluating the expression on
the right side.

Example:c = a + b means “associate the variable
c with the sum of the values associated with the
variables a and b”

Python

Conditionals and Loops

" if-statements
" While-loops
" For-loops

= Nesting

Structure:

Python

If statements

if (expression):
statement

else:
statement

Python

If statements

Quick example

Maximum of x and v:
if X > y: maximum = X
else: maximum=y

Python

While-loops

Structure:

while (expression):
statement

Python

While-loops

Quick example

Import stdio

stdio.writeln(‘1st Hello’)
stdio.writeln(‘2nd Hello’)
stdio.writeln(‘3rd Hello’)

i=4

while i <= 10:
stdio.writeln(str(i) + ‘th Hello’)
i=i+1

Python

While-loops

Output:
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

Python

For-loop

Structure:

for (variable) in range(expression):
statement

Python

For-loop

Quick example (For-Loop version!)

Import stdio

stdio.writeln(‘1st Hello’)
stdio.writeln(‘2nd Hello’)
stdio.writeln(‘3rd Hello’)

foriinrange(4, 11):
stdio.writeln(str(i) + ‘th Hello’)

Python

For-loop

Output:
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

Python

For-loop
Quick example total += i <=> total = total +i
0=0+1==1
Writeasum:1+2+..+n ;=1+2==3
=3+4+3==6
total =0 6=6+4==10

o 10=10+5==15
foriin range(1, n+1): 15 = 15 + 6 == 21

total +=1i
stdio.writeln(total) total = total + n

Structure:

Python

Nesting

if (expression):
statement
else:
if (expression):
statement
else:
if (expression):
statement
else:
statement

Example:

Python

Nesting

ifincome < 0.0:
rate = 0.00
else:
if income < 8925:
rate = 0.10
else:
ifincome < 36250:
rate = 0.15

Python

Arrays

Python

Arrays

A data structure is a way to organize data that
we wish to process with a computer program.

A 1-dimensional array is a data structure that
stores a sequence of (references to) objects.

We refer to the objects in an array as elements.

Python

Arrays

The method that we use to refer to elements in an
array is numbering and then indexing them.

If we have n elements in the sequence, we think of
them as being numbered fromOton - 1.

Then, we can unambiguously specify one of them by referring to the ith
element for any integer i in this range.

Python

Arrays

A two-dimensional array is an array of (references to) one-
dimensional arrays.

Whereas the elements of a one-dimensional array are
indexed by a single integer, the elements of a two-
dimensional array are indexed by a pair of integers:

= the first specifying a row, and the second specifying a
column.

Python

Arrays

Example:

SUITS = [‘Clubs’, ‘Diamonds’, ‘Hearts’, ‘Spades’]
x =[0.30, 0.60, 0.10]
y =[0.50, 0.10, 0.40]

This creates an array SUITSJ] with four strings, and
creates arrays x[] and y[], each with three floats.

Python

Arrays
A model for what arrays look like in the computer’s memory.
0| @ ‘Clubs’
. 1 ‘Diamonds’
suits | | @&4+——
2 ‘Hearts’
3| e ‘Spades’

This is the Array Data Structure. 4

Python

Arrays
Mutability

An object is mutable if its value can change. Arrays are
mutable objects because we can change their elements.

For example, if we create an array with the code
x =[.30, .60, .10], then the assignment statement
X[1] = .99 changes it to the array [.30, .99, .10].

Python

Arrays
Mutability

The following code reverses the order of the elements in
an array af |

n = len(a)
foriin range(n // 2):
temp=a[i]

ali]=al[n-1-i]
a[n-1-i] = temp

Python

Arrays

Ilteration

The following code iterates over all elements of an array
to compute the average of the floats that it contains:

total = 0.0

for i in range(len(a)):
total +=a[i]

average = total / len(a)

Python

Arrays

Ilteration

Python also supports iterating over the elements in an array without
referring to the indices explicitly. To do so, put the array name after
the in keyword in a for statement, as follows:

total = 0.0
for vin a:
total +=v
average = total / len(a)

Python

Arrays

Now is worthwhile to examine two fundamental
array-processing operations in more detail.

= Array Aliases

= Array Copies

Python

Arrays

Aliasing

If X[] and y[] are arrays, the statement X = y causes X and y to
reference the same array.

It is natural to think of X and y as references to two
independent arrays.

Python

Arrays

Example:

x = [.30, .60, .10]

y =X

x[1] = .99
Therefore, y[1] is also .99, even though the
code does not directly refer to y[1].

Python

Arrays
Aliasing:

This situation — whenever two variables refer to the
same object — is known as aliasing.

Python

Arrays

A fundamental operation that is found in nearly every array-
processing program is to create an array of n elements, each
initialized to a given value:
a=[]
for i in range(n):
a +=[0.0]

Python

Arrays

Example: Representing playing cards.

Suppose that we want to compose programs that
process playing cards. We might start with the

following code:

SUITS = ['Clubs’, 'Diamonds’, 'Hearts', 'Spades’]
RANKS =['2','3','4",'5','6', '7', '8', '9', '10', 'Jack’, 'Queen’, 'King', 'Ace’]

Python

Arrays

Example: Representing playing cards.

A more typical situation is when we compute the values to be stored in an array.
For example, we might use the following code to initialize an array of length 52
that represents a deck of playing cards, using the two arrays just defined:

deck =[]
for rank in RANKS:
for suit in SUITS:
card = rank + ' of ' + suit
deck += [card]

Python

Arrays

Example: Exchange

Frequently, we wish to exchange two elements in an array. Continuing
our example with playing cards, the following code exchanges the cards

atindicesiandj:

temp = deck[i]
deck[i] =deck[]]
deck[]]=temp

Here, the variable temp means temporary.

Python

Arrays
Example: Shuffle

The following code shuffles our deck of cards:

n = len(deck)

for i in range(n):
r = random.randrange(i, n)
temp = deck[r]

Proceeding from left to right, we pick a random card deck[r]=deck[i]
from deck]i] through deck[n-1] (each card equally likely) (1 =
and exchange it with deck[i. deck[i] = temp

Python

Arrays

Two-Dimensional Arrays

In many applications, a convenient way to store information is to
use a table of numbers organized in a rectangular table and refer
to rows and columns in the table.

The mathematical abstraction corresponding to such tables is
a matrix; the corresponding data structure is a two-dimensional
array.

Python

Arrays

Two-Dimensional Arrays

The simplest way to create a two-dimensional array is
to place comma-separated one-dimensional arrays
between matching square brackets.

Python

Arrays

Two-Dimensional Arrays

For example, this matrix of integers having two rows
and three columns:

(18 19 20) We call such an array a
21 22 23 2-by-3 array.

could be represented in Python using this array of arrays:
a = [[18, 19, 20], [21, 22, 23]]

Python

Arrays

Two-Dimensional Arrays

More generally, Python represents an m-by-n array as an array that
contains m objects, each of which is an array that contains n objects.

For example, this Python code creates an m-by-n array a[][] of floats,
with all elements initialized to 0.0:
a=[]
for i in range(m):
row =[0.0] * n
a += [row]

Python

Arrays

Two-Dimensional Arrays

Indexing:
When a[][] is a two-dimensional array, the syntax a[i] denotes a
reference to its ith row.

The syntax a[i][j] refers to the object at row i and column j.

To access each of the elements in a two-dimensional array, we use two
nested for loops.

Python

Arrays

Two-Dimensional Arrays

For example, this code writes each object of the m-by-
n array al][], one row per line.

for i in range(m):
for j in range(n):
stdio.write(a[i][j])
stdio.write(' ‘)
stdio.writeln()

Python

Arrays

Two-Dimensional Arrays

This code achieves the same effect without using
indices:

for row in a:
for v in row:
stdio.write(v)
stdio.write(')
stdio.writeln()

Python

Functions

Functions support a key concept that will pervade
your approach to programming from this point
forward: Whenever you can clearly separate tasks
within a computation, you should do so.

You can define a function using a def statement that

specifies the function signature, followed by a
sequence of statements that constitute the function.

Structure:

Python

Functions

def FunctionName (argument):
statement
statement

statement

Python

Functions
Example:

def harmonic (n):
total = 0.0
foriinrange (1, n+1):

total += 1.0/ i

return total

Python

parameter
sighature function name variable

| Y. function
7 7 body
local def [harmonicl (In]): | /
variable ~{total}F 0.0

foriinrange (1, n+1):
: return
return total += 1.0/ |

statement — _ — value
] returnM

Python

Functions

The first line of a function definition, known as
its signature, gives a name to the function and to each
parameter variable.

Python

Functions

The signature consists of the keyword def; the
function name; a sequence of zero or more parameter
variable names separated by commas and enclosed in
parentheses; and a colon.

Python

Functions

The indented statements following the signature
define the function body. The function body can

consist of the kinds of statements that we discussed in
Chapter 1.

Python

Functions

It also can contain a return statement, which transfers
control back to the point where the function was
called and returns the result of the computation or
return value.

Python

Functions

The body may also define local variables, which are
variables that are available only inside the function in
which they are defined.

Python

Functions

Scope

The scope of a variable is the set of statements that can
refer to that variable directly. The scope of a function's
local and parameter variables is limited to that function;
the scope of a variable defined in global code — known
as a global variable — is limited to the .py file containing
that variable.

Python

Functions

Scope

Therefore, global code cannot refer to either a
function's local or parameter variables. Nor can one
function refer to either the local or parameter
variables that are defined in another function.

Program outputs the harmonic numbers

Scope of n and total —

Scope of local and
parameter variables.

Python

Functions

import stdio
import sys

This code should not refer to
arg or value

Return the nth harmonic number.

def harmonic(n):
total = 0.0
foriin range(1, n+1):
total += 1.0 / float(i)
return total

e——— scope of i

‘\

Two different variables

Write to standard output the harmonic numbers specified as command-

line arguments.

for j in range(1, len(sys.argv)):
arg = int(sys.argv[j])
value = harmonic(arg)
stdio.writeln(value) <=

<«—— scope of i

<+«—— scope of arg and value

This code cannot refer to n or total

Python

Functions
Example: Primality Test

def isPrime(n) :
if n < 2: return False
i=2
while i * i <= n:
if n % i ==0: return False
i+=1

return True

Python

Modules and Clients

Each program that we’ve composed so far consists of
Python code that can reside in a single .py file.

For large programs, keeping all the code in a single file
is restrictive and unnecessary.

Fortunately, it is easy in Python to call a function that
is defined in another file.

Python

Modules and Clients

We distinguish two types of Python programs:

= A module contains functions that are available for
use by other programs.

= Aclientis a program that makes use of a function in
a module.

Python

Modules and Clients

Let’s consider a program that computes the Gaussian
distribution functions.

This program will be named gaussian.py
We will deem this file the module.

Python

Modules and Clients

Now let’s consider another program that will use the
functions in the gaussian.py file.

This program will be named gaussiantable.py
We will deem this file the client.

Python

Modules and Clients

To summarize, the client named gaussiantable.py will
use the the functions in module gaussian.py.

Python

Modules and Clients

But how is this process done?

Python

gaussian.py | Module gaussiantable.py | Client
import sys
import stdio
import math
Return the value of the Gaussian probability function with mean mu H . .
and standard deviation sigma at If,?e given :va/ue. Import SyS Im ported the ga USSIa n. py fl Ie-
def pdf(x, mu=0.0, sigma=1.0): import stdio

x = float(x - mu) / sigma . . /
import gaussian

return math.exp(-x*x/2.0) / math.sqrt(2.0*math.pi) / sigma

#.

#.
Return the value of the cumulative Gaussian distribution function "
Z‘V:"’; ;’(7”” m Z"d,s’a”djfg)de"’a“"” sigma at the given z value. # Accept a mean and standard deviation as command-line arguments.
erc z, mu=0.0, sigma=1.0):
2 = float(z - mu) / sigma # Write to standard output a table of the percentage of students
ifz <-8.0: return 0.0 . . .
2> +8.0: return 1.0 # scoring below certain scores on the SAT, assuming the test scores
total = 0.0
t::n -, # obey a Gaussian distribution with the given mean and standard
i=3 # deviation.
while total != total + term:
total +=term term *=z * z /i mu = float(sys.a rgV[l])
i+=2 .
return 0.5 + total * pdf(z) Sigma = float(sys.a rgv[Z])
Accept floats z, mu, and sigma as command-line arguments. Use them
#to test the phi() and Phi() functions. Write the for score in range(400, 1600+1, 100):
results to standard output. . .
def main(): percent = gaussian.cdf(score, mu, sigma)
2 = float{sys.argv[1]) stdio.writef('%4d %.4f\n', score, percent)

mu = float(sys.argv[2])

sigma = float(sys.argv[3])

stdio.writeln(cdf(z, mu, sigma))
if_name__=='__main__":

main()

Python

Modules and Clients

Private Functions

Sometimes we wish to define in a module a helper
function that is not intended to be called directly by
clients.

We refer to such a function as a private function.

Python

Modules and Clients

Private Functions

By convention, Python programmers use an
underscore as the first character in the name of a
private function.

Python

Modules and Clients

For example:

Private Functions

def _private():
print(“This function is private.”)

def public():
print(“This function is public.”)

Python

Recursion

The idea of calling one function from another immediately
suggests the possibility of a function calling itself.

The function-call mechanism in Python supports this possibility,
which is known as recursion.

Python

Recursion

Recursion is a powerful general-purpose programming
technique, and is the key to numerous critically important
computational applications, ranging from combinatorial search
and sorting methods methods that provide basic support for
information processing.

Python

Recursion
Your First Recursive Program

The "HelloWorld" program for recursion is to implement
the factorial function, which is defined for positive
integers n by the equation:

n'=nx(n-1)x(n-2)x..x2x1

Python

Recursion
Your First Recursive Program

n!is easy to compute with a for loop, but an even easier
method is to use the following recursive function:

def factorial(n):
ifn==1:
return 1
return n * factorial(n-1)

Python

Recursion

Our factorial() implementation exhibits the two main
components that are required for every recursive function.

= The base case returns a value without making any subsequent recursive calls. It
does this for one or more special input values for which the function can be
evaluated without recursion. For factorial (), the basecaseisn = 1.

= The reduction step is the central part of a recursive function. It relates the function at one
(or more) inputs to the function evaluated at one (or more) other inputs. Furthermore, the
sequence of parameter values must converge to the base case. For factorial (), the
reduction stepisn * factorial(n-1) and n decreases by one for each call, so the
sequence of parameter values converges to the base case of n = 1.

Python

Mathematical Induction

Recursive programming is directly related to mathematical
induction, a technique for proving facts about discrete
functions.

Proving that a statement involving an integer n is true for
infinitely many values of n by mathematical induction involves

two steps.

Python

Mathematical Induction
Those two steps are the following:

" The base case is to prove the statement true for some
specific value or values of n (usually 0 or 1).

" The induction step is the central part of the proof. For

example, we typically assume that a statement is true for all

positive integers less than n, then use that fact to prove it
true for n.

Python

Towers of Hanoi

No discussion of recursion would be complete without the
ancient Towers of Hanoi problem.

Step0of 15

Python

Towers of Hanoi

We have three poles and n discs that fit onto the poles.

The discs differ in size and are initially arranged on one of the

poles, in order from largest (disc n) at the bottom to smallest
(disc 1) at the top.

Python

Towers of Hanoi

The task is to move the stack of discs to another pole, while
obeying the following rules:

= Move only one disc at a time.

= Never place a disc on a smaller one.

Python

Towers of Hanoi

Recursion provides the plan that we need, based on the
following idea:

= First, we move the top n-1 discs to an empty pole.

= Then we move the largest disc to the other empty pole (where it does
not interfere with the smaller ones).

= Lastly, we compete the job by moving the n-1 discs onto the largest disc

Python

Towers of Hanoi

import sys
import stdio
#
Write to standard output instructions to move n Towers of Hanoi
disks to the left (if parameter left is True) or to the right (if
parameter left is False).
def moves(n, left):
if n==0:
return
moves(n-1, not left)
if left:
stdio.writeln(str(n) + ' left’)
else:
stdio.writeln(str(n) + ' right’)
moves(n-1, not left)

Python

More on Data Types

At first, our programs were confined to operations on
numbers, booleans, and strings.

The reason is that the Python data types that we've
encountered so far — int, float, bool, and str — manipulate
numbers, booleans, and strings, using familiar operations.

Now, we begin to consider other data types.

Python

Data Types
Methods

A method is a function associated with a specified object (and,
by extension, with the type of that object).

That is, a method corresponds to a data-type operation.

Python

Data Types
Methods

We can call (or invoke) a method by using a variable name,
followed by the dot operator (.), followed by the method name,
followed by a list of arguments delimited by commas and
enclosed in parentheses.

Python

Data Types
Methods

As a simple example, Python's built-in int type has a method
named bit_length(), so you can determine the number of bits
in the binary representation of an int value as follows:

Create an int object
x=3*100 [~

bits| ¥ x|bit_length() =—— Call on an int method
stdio,writeln

(b'tsj +— Call on an stdio function

Module name —

Python

Data Types
Methods

This code writes 159 to standard output, telling you that 319 (a
huge integer) has 159 bits when expressed in binary.

x=3"100

.—— Create an int object

bits| F x

bit_length()

«——— Call on an 1nt method

Module name —

stdiolwriteln(bits)

+— Call on an stdio function

Python

Data Types
Difference between method and function

The key difference between a function and a method is that a
method is associated with a specified object.

Python

Data Types
Difference between method and function

method function
Sample call x.bit_length() stdio.writeln(bits)
Typically invoked with variable name module name
Parameters Object reference and argument(s) argument(s)

Primary Purpose Manipulate object value compute return value

Python

User-Defined Data Types

As a running example of a user-
defined data type, we will consider a
data type Charge for charged
particles.

Python

User-Defined Data Types

In particular, we are interested in a two-dimensional model
that uses Coulomb's law, which tells us that the electric
potential at a point due to a given charged particle is
represented by V = kq/r, where g is the charge value, r is the
distance from the point to the charge, and k=8.99 x 10° N
m2/C? is a constant known as the electrostatic constant,
or Coulomb's constant.

Python

User-Defined Data Types

For consistency, we use S| (Systeme International
d'Unites): in this formula, N designates newtons
(force), m designates meters (distance), and C
represent coulombs (electric charge).

Python

User-Defined Data Types

When there are multiple charged particles, the
electric potential at any point is the sum of the
potentials due to each charge.

Python

User-Defined Data Types
Application Programming Interface

We specify the behavior of the Charge data
type by listing its operations in an API.

Python

User-Defined Data Types
API for our user-defined Charge data type

operation description

Charge(x0, y0, q0) A new charge centered at (x0, y0) with
charge value g0

c.potentialAt(x, y) Electric potential of charge c at point (x, y)

str(c) ‘g0 at (x0, y0)’ (string representation of charge c)

Python

User-Defined Data Types
Application Programming Interface

The first entry in the API, which has the same name as the data
type, is known as a constructor.

Each call to the Charge constructor creates exactly one
new Charge object.

Python

User-Defined Data Types
Application Programming Interface

The other two entries define the data-type operations:

= The first is a method potentialAt (), which computes and returns
the potential due to the charge at the given point (x, y).

= The second is the built-in function str (), which returns a string
representation of the charged particle.

Python

User-Defined Data Types
Creating Objects

To create an object from a user-defined data
type, you call its constructor, which directs
Python to create a new individual object.

Python

User-Defined Data Types
Creating Objects

You call a constructor just as if it were a function,
using the name of the data type, followed by the
constructor's arguments enclosed in parentheses and
separated by commas.

Python

User-Defined Data Types
Creating Objects

Example:

Charge(x0, y0, q0) creates a new Charge object with position
(x0, y0) and charge value q0 and returns a reference to the
new object.

Python

User-Defined Data Types
Calling a method

As was mentioned before, we typically use a variable name to identify the
object to be associated with the method we intend to call.

For our example, the method call cl1.potentialAt(.20, .50) returns a float
that represents the potential at the query point (0.20, 0.50) due to
the Charge object referenced by c1.

Python

User-Defined Data Types
String Representation

In any data-type implementation, it is typically worthwhile to
include an operation that converts an object's value to a string.

Python has a built-in function str () for this purpose, which
you been using from the beginning to convert integers and
floats to strings for output.

Python

User-Defined Data Types
String Representation

Since our Charge APl hasa str () implementation, any client
can call str() to get a string representation of a Charge object.

Example: the call str(c1) returns the string '21.3 at (0.51, 0.63)'.

Python

Classes

In Python, we implement a data type as a class.

To define a class, we use the keyword class, followed
by the class name, followed by a colon, and then a list
of method definitions.

Python

Classes

Our class defines a constructor, instance
variables, and methods, which we will address
in detail next.

Python

import sys
import math
import stdio

Charge program
class Charge:
Construct self centered at (x, y) with charge q.
def __init__(self, x0, y0, q0):
self._rx = x0 # x value of the query point
self._ry = y0 # y value of the query point
CIaSS self._q = q0 # Charge

Return the potential of self at (x, y).
def potentialAt(self, x, y):
COULOMB = 8.99e09
dx = x - self._rx
dy =y-self._ry
r = math.sqrt(dx*dx + dy*dy)
if r == 0.0: # Avoid division by 0
if self._q >=0.0:
return float('inf’)
else:
return float('-inf’)
return COULOMB * self._q/r

Return a string representation of self.
def __str__(self):
result = str(self._q) +"at (‘
result += str(self._rx) +', ' + str(self._ry) + ')

return result

Cha rge program Class definition

Define and initialize
instance variables

methods

~—

Python

import sys
import math

import stdio
#

Class name

-

Parameter variable

class Charge:

def __init__(self

71._» self._rx = x0 #

self._ry =y0 #

A

» self._q=q0#

Construct self centere

. y) with charge q.
» Y0, qO):

X V. f the query point

y value of th

Charge

def potentialAt(s

ifr==0.0:#A

return fl
else:
return fl

Return the potential of self at (x, y).

COULOMB = 8.99e09
dx = x - self._rx

dy =y-self._ry <
r = math.sqrt(dx*dx + dy*dy)
= void division by 0 \
if self._q >=0.0:

return COULOMB * self._q/r

elf, x, y):

| __ constructor

Reference to invoking
~~ Object, or special parameter
Variable.

oat('inf’)

oat('-inf)

Return a string
def __str__(self):

result = str(se

return result

result += str(self._rx) +', ' + str(self._ry) + ')

representation of self.

(AN

If._q)+ at(

Ordinary method

T~ Instance variables

e

Special method to support
Str().

Python

Constructor

A constructor creates an object of the specified type and
returns a reference to that object.

Example: the code ¢ = Charge(x0, y0, gO) returnsa
new Charge object, suitably initialized.

Python

Designing Data Types

Developing APIs is a critical step in the
development of any program.

Python

Designing Data Types
Encapsulation

The process of separating clients from implementations by
hiding information is known as encapsulation.

Details of the implementation are kept hidden from clients,

and implementations have no way of knowing details of client
code, which may even be created in the future.

Python

Designing Data Types

Immutability

An object from a data type is immutable if its data-type value
cannot change once created.

An immutable data type, such as a Python string, is one in
which all objects of that type are immutable.

Python

Designing Data Types

Tuples

Python's built-in tuple data type represents an immutable sequence
of objects.

It is similar to the built-in list data type (which we use for arrays),
except that once you create a tuple, you cannot change its items.

Python

Designing Data Types
Polymorphism
Often, when we compose methods (or functions), we intend
for them to work only with objects of specific types.
Sometimes, we want them to work with objects of different
types.

A method (or function) that can take arguments with different
types is said to be polymorphic.

Python

Designing Data Types
Overloading
The ability to define a data type that provides its own

definitions of operators is a form of polymorphism known
as operator overloading.

In Python, you can overload almost every operator, including
operators for arithmetic, comparisons, indexing, and slicing.

Python

Designing Data Types

Hashing

We now consider a fundamental operation related to
equality testing, known as hashing, that maps an
object to an integer, known as a hash code.

Python

Designing Data Types
Inheritance

Python provides language support for defining relationships among classes,
known as inheritance.

Software developers use inheritance widely, so you will study it in detail if
you take a course in software engineering.

When used properly, inheritance enables a form of code reuse known
as subclassing.

Python

Designing Data Types

Inheritance

The idea is to define a new class (subclass, or derived class)
that inherits instance variables and methods from another
class (superclass, or base class).

The subclass contains more methods than the superclass.

Prolog

Prologic!

Prolog

Logic

What is Logic?

Logic is the science of reasoning

Prolog
Logic
It’s about determining the validity of an argument.

Reasoning is a special mental activity called inferring, or
making inferences.

To infer is to draw conclusions from premises (premises are
data, information, or facts).

Prolog

Logic
What is an argument?
An argument is a collection of statements, one of which is

designated as the conclusion and the remainder of which are
designated as the premises.

Prolog

Logic

The premises of an argument are intended to support (or
justify) the conclusion of the argument.

Prolog

Logic

Many times, we make all kinds of statements.

A statement is a declarative sentence, which is to say a
sentence that is capable of being true or false. This is also

known as a propositional statement.

Prolog

Logic

Examples of propositional statements:
= |tis raining

" | am hungry

"= 2+2=4

= God exists

Prolog

Logic
We can make conclusions based on what premises tell us.
There were 20 persons originally (premise)

There are 19 persons currently (premise)

Therefore, someone is missing (conclusion)

Prolog

Logic

In an argument, the premises are intended to support (or
justify) the conclusion.

Prolog

Deductive Logic Versus Inductive Logic

Two examples:

a) There is smoke;
Therefore, there is fire.

b) There were 20 people originally;
There are 19 persons currently;
Therefore, someone is missing.

Prolog

Deductive Logic Versus Inductive Logic

The example of a) is what we call inductive logic. Why?

We know that the existence of smoke does not guarantee
(ensure) the existence of fire; it only makes the existence of
fire likely or probable. Yet, we may be wrong in asserting that

there is fire due solely to smoke, and so this argument is
fallible.

Prolog

Deductive Logic Versus Inductive Logic

Inductive logic investigates the process of drawing probable
(likely, plausible) though fallible conclusions from premises.

Prolog

Deductive Logic Versus Inductive Logic

The example of b) is what we call deductive logic. Why?

If the premises are in fact true, then the conclusion is
certainly also true.

Said differently, the truth of the premises necessitates the
truth of the conclusion.

Prolog

Deductive Logic Versus Inductive Logic

Typically, a course in logic is about deductive logic.

Prolog

Fundamental Facts

An argument is factually correct if and only if all of its premises are
true.

An argument is valid if and only if its conclusion follows from its
premises.

An argument is sound if and only if it is both factually correct and
valid.

Prolog

General Forms

All X are Y

Some XareY

No XareY

Some X are notY

Prolog

’ ’
P’s and Q’s
We can represent sentences using letters, like p and q.

P = “l went to the store.”
Q = “l bought candy.”

Prolog

’ ’
P’s and Q’s
We can negate the sentences (or discuss their opposites) like so:

P = “l went to the store.”
—P = “I did not go to the store.”

Q = “l bought candy.”
—Q = “I did not buy candy.”

Prolog

P’'s and Q’s

We can also combine them using what’s called conjunction.
P2 Qmeans “Pand Q.”

P = “l went to the store.”
Q = “l bought candy.”

P2 Q=" wenttothe store AND | bought candy.”

Prolog

P’'s and Q’s

We may use another connective called disjunctions.
Pv Q means “PorQ.”

P = “l went to the store.”
Q = “l bought candy.”

Pv Q=" wentto the store OR | bought candy.”

Prolog

P’'s and Q’s

Conditionals use a right arrow, like this —.
P - Q means “If P, then Q.”

P = “l went to the store.”
Q = “l bought candy.”

P— Q= “If | went to the store, then | bought candy.”

Prolog

P’'s and Q’s

Biconditionals use a line with both arrows at the end, like this <.
P & Q means “If P, then Q” and “If Q, then P.” Therefore, P = Q.

P = “l went to the store.”
Q = “l bought candy.”

P < Q= "“If | went to the store, then | bought candy,” and “If |
bought candy, then | went to the store.”

Prolog

P’s and Q’s
P and Q can be true. BUT, they can also be false.

Saying P = “l went to the store” could be a true or false statement.

If P is true, then we give it a truth value denoted by T.
If P is false, then we give it a truth value denoted by F.

Prolog

Truth Tables

A truth table helps us check for the validity of an argument.

esliesliollaplhke
)i (= |] [| 2

Prolog

Truth Tables

What are the truth values of ‘P AND Q" or ‘P2 Q’

PAqg

eollesiillrlie
ool liesllte
i || |

Prolog

Truth Tables

What are the truth values of ' PORQ’ or ‘PvQ’

pPvq

esliesllpllaplle
) = |] | |2
Y | | [

Prolog

Truth Tables

What are the truth values of ‘P — Q' or ‘If P, then Q’ or ‘PcQ’

p—(

eslleslipllaplle
M (| M [[

= 3|3

Prolog

P = | went to the store TrUth Tables

Q = | bought candy

What are the truth values of ‘P < Q or ‘P=Q’

If | went to the store,
Then | bought candy.

p<(q

AND

If | bought candy,
Then | went to the store.

esllesiipliplle
= | | 2
— (3| 3| {

Prolog

Propositional Logic

The simplest, and most abstract
logic we can study is called
propositional logic.

Prolog

Propositional Logic

Definition: A proposition is a statement that can be either true or
false; it must be one or the other, and it cannot be both.

The following are propositions:
— The reactor is on.

—The wing-flaps are up.

— John Major is prime minister.

Prolog

Propositional Logic

The following are not propositions:

—Are you going out somewhere?
—2+3

Prolog
Propositional Logic

We now define atomic propositions.
Intuitively, these are the set of
smallest propositions.

Prolog

Propositional Logic

Definition: An atomic proposition is
one whose truth or falsity does not
depend on the truth or falsity of any
other proposition.

Prolog

Propositional Logic

So all the propositions we
went over are atomic.

Prolog

Propositional Logic

Now, rather than write out propositions
in full, we will abbreviate them by using
propositional variables.

Prolog

Propositional Logic

It is standard practice to use the lower-
case roman lettersp, q, r, ... to stand
for propositions.

Prolog

First-Order Logic
Why not propositional logic?
Consider the following statements:

— All monitors are ready.
— X12 is a monitor.

Prolog

First-Order Logic

We saw in an earlier slide, these
statements are propositions: their
meaning is either true or false.

Prolog

First-Order Logic

Propositional logic is the most
abstract level at which we can
study logic.

Prolog

First-Order Logic

As we shall say, it is too coarse grained
to allow us to represent and reason
about the kind of statement we need to
write in formal specification.

Prolog

First-Order Logic

We shall now introduce a generalization
of propositional logic called first-order
logic (FOL). This new logic affords us
much greater expressive power.

Prolog

First-Order Logic

First, we shall look at how the language
of first-order logic is put together.

The basic components of FOL are called
terms.

Prolog

First-Order Logic

Essentially, a term is an object
that denotes some object other
than true or false.

Prolog

First-Order Logic

The simplest kind of term is a constant.
Example: Any number, like 8, can be considered a constant.

The second simplest kind of term is a variable.

Example: The letter x can be considered a variable.

A more complex class of terms — functions.
Example: plus(2,3) can be used to represent ‘2 + 3.’

Prolog

First-Order Logic

In addition to having terms, FOL

has relational operators, which

capture relationships between
objects.

Prolog

First-Order Logic

The language of FOL contains a stock of
predicate symbols.

These symbols stand for relationships
between objects.

Prolog

First-Order Logic

Again, each predicate symbol has an
associated arity. . .

... and each argument has a type.

Prolog

First-Order Logic

Definition: Let P be a predicate symbol of arity n €
N, which takes arguments of types Ty, ..., T,,. Then
ifty,..., T aretermsoftypeTy,..., T,
respectively, then P(74, . . ., T,;) is a predicate, which
will either be true or false under some
interpretation.

Prolog

First-Order Logic

EXAMPLE. Let gt be a predicate symbol with the intended
interpretation ‘greater than’. It takes two arguments, each of

which is a natural number.

Then:
—gt(4, 3) is a predicate, which evaluates to true;

—gt(3, 4) is a predicate, which evaluates to false.
but gt(-1, 2) isn’t a predicate.

Prolog

First-Order Logic

So a predicate just
expresses a relationship
between some values.

Prolog

First-Order Logic

What happens if a predicate
contains variables: can we
tell if it is true or false?

Prolog

First-Order Logic

Not usually; we need to
know an interpretation for
the variables.

Prolog

First-Order Logic

A predicate that contains no
variables is a proposition.

Prolog

SWI-Prolog

SWI-Prolog is a free Prolog environment. We will use it write code
in Prolog.

Prolog

Syntax
Facts: Prolog:
Johnny is nice nice(Johnny).
The dog is brown brown(dog).

Suzie likes Bobby likes(Suzie, Bobby).

Prolog

Overview of prolog

AND :
IF -

OR ;

NOT not

Prolog

Defining Relations by facts

Here’s a family tree:

Prolog

Defining Relations by facts

Here’s a family tree: The tree defined by a
program in prolog.
@ parent(pam, bob).
\ % Pam is a parent of Bob
@ @ parent(tom, bob).
/ parent(tom, liz).
@ parent(bob, ann).
/ parent(bob, pat).

parent(pat, jim).

Prolog

Defining Relations by facts

Family tree
Is Bob a parent of Pat?

?- parent(bob, pat).

@ z ?- parent(liz, pat).

?- parent(tom, ben).

/ Who is Liz's parent?
@ o ?- parent(X, liz).
/ Who are Bob’s children?

o ?- parent(bob, X).

Prolog

Defining Relations by facts

Family tree Who is a parent of whom?
o Find X and Y such that X is

(tom) a parent of .
\ o ?- parent(X, Y).
) ()
"4

Who is a grandparent of Jim?
@ o ?- parent(Y, jim),
parent(X, Y).

Prolog

Defining Relations by facts

Family tree
Y Who is a grandparent of Jim?

o ?- parent(Y, jim),
parent(X, Y).

parent

@ d) grandparent
/ parent

Prolog

Defining Relations by facts

Family tree
Who are Tom’s grandchildren?
@ o ?- parent(tom, X),
@ \E parent(X, Y).
/ Do Ann and Pat have a
@ common parent?
/ o ?- parent(X, ann),

parent(X, pat).

Prolog

Defining Relations by facts

Family tree

Facts:

@ female(pam). % Pam is female
female(liz).
\CD female(ann).
@ female(pat).

/ male(tom). % Tom is male

le(bob).
/ maled jim).

Prolog

Defining Relations by rules

Family tree Rules have:

A condition part (body)

@ o the right-hand side of the rule
A conclusion part (head)
@ o the left-hand side of the rule
/ Rule: offspring(Y, X) :- parent(X, Y).
@ o Forall Xand Y,

/ Y is an offspring of X if

X is a parent of Y.

Prolog

Defining Relations by rules

Family tree

Example:

@ o offspring(Y, X) :- parent(X, Y).

o The rule is general in the sense that it is
applicable to any objects X and Y.
@ o A special case of the general rule:

offspring(liz, tom) :- parent(tom, liz).

/ o ?- offspring(liz, tom).

@ o ?- offspring(X, Y). parent offspring

Prolog

Defining Relations by rules

Fam”y tree Define the “mother” relation:
mother(X, Y) :- parent(X, Y), female(X).

@ For all X and Y,
X is the mother of Y if

X is a parent of Y and
@ X is a female.

/ female
/ parent mother

Prolog

Defining Relations by rules

Family tree

Define the “grandparent” relation:
grandparent(X, Z) :-
parent(X, Y), parent(Y, 2Z).

o}

parent

GD grandparent

parent

>

Prolog

Defining Relations by rules

Family tree

Define the “sister” relation:

sister(X, Y) :-

parent(Z, X), parent(Z, Y), female(X).
Forany X and Y,

X is a sister of Y if

(1) both X and Y have the same parent, and

(2) X is female.
?- sister(ann, pat).
?- sister(X, pat).
?- sister(pat, pat). parent parent

o Pat is a sister to herself?!
o @

sister

Prolog

Defining Relations by rules

Family tree

To correct the “sister” relation:

sister(X, Y) :-
parent(Z, X), parent(Z, Y), female(X),
different(X, Y).
different (X, Y) is satisfied if and only if X and Y
are not equal. (Please try to define this function)

different(x,y) :- not(x,y), not(y,x).

— @

sister

Prolog

Defining Relations by rules

Example:
Axioms: All men are fallible
Socrates is a man.

Theorem: Socrates is fallible.

For all X, if X is @a man then X is fallible.
fallible(X) :- man(X).
man(socrates).
> ?- fallible(socrates).

Prolog

Prolog Examples

Facts: Rule:
likes(ryan, brittney). dating(X, Y) :-
likes(brittney, ryan). ikes(X, Y),

likes(dan, mary). ikes(Y, X).

Prolog

Prolog Examples

likes(ryan, brittney). ?- likes(dan, mary).
likes(brittney, ryan). output: true
likes(dan, mary).

?- likes(dan, brittney).

dating(X, Y) :- output: false
likes(X, Y),
likes(Y, X). ?- dating(ryan, brittney).

output: true

Prolog

Prolog Examples
/*weather(City, Season, Temp).*/

weather(phoenix, summer, hot).

weather(la, summer, warm).

weather(phoenix, winter, warm).

Prolog

Prolog Examples

Now input the following into the terminal:

?- Weather(City, summer, hot), weather(City, winter, warm).

Output: City = phoenix.

Prolog

Prolog Examples

Now input the following into the terminal:

?- warmer_than(phoenix, la)
Phoenix is warmer_than la

Output: true.

Prolog

Prolog Examples

Now input the following into the terminal:

?- warmer_than(la, phoenix)

Output: false.

Psychology

Psychology

Psychology is the science of
behavior and mental processes.

Psychology

Behavior is anything an organism does—
any action we can observe and record.

Yelling, smiling, blinking, sweating,
talking, and questionnaire marking are
all observable behaviors.

Psychology

Mental processes are the internal,
subjective experiences we infer from
behavior —sensations, perceptions,
dreams, thoughts, beliefs, and feelings.

Psychology

Consciousness

Consciousness is our awareness of
ourselves and our environment.

Psychology

Selective Attention

The focusing of conscious awareness on
a particular stimulus.

Psychology

Selective Attention

We may think we can fully attend to a
conversation or a class lecture while
checking and returning text messages.

Psychology

Selective Attention

Actually, our consciousnhess focuses on
but one thing at a time.

Psychology

Selective Attention

By one estimate, our five senses take in
11,000,000 bits of information per
second, of which we consciously process
about 40.

Psychology
Selective Attention

Yet our mind’s unconscious track

intuitively makes great use of the other
10,999,960 bits.

Psychology

Dual Processing: The Two-Track Mind

This is the principle that information is
often simultaneously processed on
separate conscious and unconscious
tracks.

Psychology

Perception

The process of organizing and
interpreting sensory information,
enabling us to recoghize meaningful
objects and events.

Psychology

Learning

The process of acquiring through
experiencing new and relatively
enduring information or behaviors.

Psychology

Associative Learning

Learning that certain events occur together. The
events may be two stimuli (as in classical conditioning)
or a response and its consequences (as an operant
conditioning).

Psychology

Stimulus

Any event or situation that
evokes a response.

Psychology

Cognitive Learning

The acquisition of mental information,
whether by observing events, by
watching others, or through language.

Psychology
Memory

Memory is the learning that persists over
time; it is the information that has been
acquired and stored and can be
retrieved.

Psychology

Memory

Evidence that learning persists includes
these three measures of retention:

= Recal
= Recognition
= Relearning

Psychology

Memory

Recall is a measure of memory in which
the person must retrieve information
learned earlier, as on a fill-in-the-blank
test.

Psychology

Memory

Recognition is a measure of memory in
which the person identifies items
previously learned, as on a multiple-
choice test.

Psychology

Memory

Relearning is a measure of memory that
assess the amount of time saved when
learning material again.

Psychology

Memory

: processing
Encoding (acquiring)
information
Memory: l
Our capacity for storing
storing and Storage (maintaining)
retrieving information
information. l
) retrieving
Retrieval (recalling)

information

Psychology
Thinking

Cognition is all the mental activities
associated with thinking, knowing,
remembering and communicating.

Psychology

Thinking

Heuristics are simpler thinking strategies. A
simple thinking strategy that often allows us
to make judgements and solve problems
efficiently; usually speedier but also more
error-prone than algorithmes.

Psychology

Thinking

Insight is a sudden realization of a
problem’s solution; contrasts with
strategy-based solutions.

Psychology
Thinking

Intuition is an effortless, immediate,

automatic feeling or thought, as
contrasted with explicit, conscious

reasoning.

Psychology
Language

Language is our spoken, written, or
sighed words and the ways we combine
them to communicate meaning.

Psychology

Intelligence

The mental potential to learn from
experience, solve problems, and use
knowledge to adapt to new situations.

Psychology

Sternberg’s Three Intelligences

Analytical intelligence is school smarts; traditional academic
problem solving.

Creative intelligence is the ability to react adaptively to new
situations and generate novel ideas.

Practical intelligence is street smarts; skill at handling everyday
tasks, which may be ill defined, with multiple solutions.

Psychology

1Q
|Q stands for Intelligence Quotient, and
was defined originally as the ratio of
mental age (ma) to chronological age
(ca) multiplied by 100

(thus, 1Q = ma/ca *100).

Psychology

1Q

On the contemporary intelligent tests,
the average performance for a given age
is assigned a score of 100.

Psychology

1Q

Example:

1Q = mental age of 13 %100 = 130

chronological age of 10

Neuroscience

Neuroscience

What is Neuroscience

Neuroscience is the scientific
study of the nervous system.

Neuroscience

Neural System

A neuron is a nerve cell; the basic building block of the nervous
system.

Dendrites are a neuron’s often bushy, branching extensions that
receive messages and conduct impulses toward the cell body.

Axons are the neuron extension that passes messages through its
branches to other neurons or to muscles or glands.

Neuroscience

Neural System

The Myelin Sheath is a fatty tissue layer segmentally encasing
the axons of some neurons; enables vastly greater transmission
speed as neural impulses hop from one node to the next.

Synapse is the junction between the axon tip of the sending
neuron and the dendrite or cell node of the receiving neuron.
The tiny gap at this junction is called the synaptic gap or
synaptic cleft.

Neuroscience

Neural System

Dendrites Terminal branches of axon
(receive messages (form junctions with other cells)
from other cells)

Axon

(passes messages away
from the cell body to
~ other neurons,

muscles, or glands)

Myelin sheath
(covers the axon

Cell body Neural impulse (action potential) of some neurons
(the cell’s life- (electrical signal traveling and helps speed
support center) down the axon) neural impulses)

Neuroscience

Neural System

Neurotransmitters are the chemical messengers that cross
the synaptic gaps between neurons. When released by the
sending neuron, neurotransmitters travel across the synapse
and bind to receptor sites on the receiving neuron, thereby
influencing whether that neuron will generate neural
impulse.

Neuroscience

Neural System

Examples of neurotransmitters are:

= Acetylcholine (ACh) — enables muscle action, learning, and memory.

= Dopamine — influences movement, learning, attention, and emotion.

= Serotonin — affects mood, hunger, sleep, and arousal.

= Norepinephrine — helps control alertness and arousal.

= GABA (Gamma-aminobutyric acid) —a major inhibitory neurotransmitter.
= Glutamate —a major excitatory neurotransmitter; involved in memory.

= Endorphins — neurotransmitters that influence the perception of pain or
pleasure.

Neuroscience

The Brain

The limbic system is the neural system (including the
amygdala, hypothalamus, and hippocampus) located

below the cerebral hemispheres; associated with
emotions and drives.

Neuroscience

The Brain

The amygdala is the two lima-bean sized
neural clusters in the limbic system;
linked to emotion.

Neuroscience

The Brain

The Hypothalamus a neural structure lying below the
thalamus; it directs several maintenance activities (eating,
drinking, body temperature), helps govern the endocrine

system via the pituitary gland, and is linked to emotion and
reward.

Neuroscience

Corpus callosum:
axon fibers connecting the
two cerebral hemispheres

Cerebral cortex:
ultimate control and

information-processin
Right hemisphere P g
Thalamus:

relays messages between
lower brain centers
and cerebral cortex

Left hemisphere

L S

Hypothalamus:
controls maintenance
functions such as eating;
helps govern endocrine
system; linked to emotion
and reward

(
Amygdala: %’

Pituitary:
master endocrine gland

linked to -
emotion Reticular formation:

helps control arousal

Pons:

helps coordinate movement
Hippocampus and control sleep
linked to Medullla=h ———
conscious ;::;;zii eartbeat an
memory g

Spinal cord:

pathway for neural fibers
traveling to and from brain;
controls simple reflexes

Cerebellum:
coordinates voluntary
movement and balance

Cerebral cortex Limbic system Brainstem and supports learning and
memories of such

Neuroscience

The Brain

The Cerebral Cortex is the intricate fabric of interconnected
neural cells covering the cerebral hemispheres; the body’s
ultimate control and information-processing center.

The frontal lobes are the portion of the cerebral cortex lying
just behind the forehead; involved in speaking and muscle
movements and in making plans and judgments.

Neuroscience

The Brain

The parietal lobes are the portion of the cerebral cortex lying
at the top of the head and toward the rear; receives sensory
input for touch and body position.

The occipital lobes are the portion of the cerebral cortex
lying at the back of the head; includes areas that receive
information from the visual fields.

Neuroscience

The Brain

The temporal lobes are the portion of the cerebral cortex
lying roughly above the ears; includes the auditory areas,
each receiving information primarily from the opposite ear.

Neuroscience

\\|"l////
=
N

Artificial Intelligence

Artificial Intelligence

Artificial Neural Networks

Artificial Neural Networks are modeled after
biological neural networks and attempt to
allow computers to learn in a similar manner
to humans - reinforcement learning.

Artificial Intelligence

Artificial Neural Networks

ANNSs are used for the following:
= Pattern Recognition

" Time Series Predictions

= Signal Processing

= Anomaly Detection

= Control

Artificial Intelligence

Artificial Neural Networks

The human brain has interconnected neurons with dendrites
that receive inputs, and then based on those inputs, produce
an electrical signal output through the axon.

neuron

dendrites

Artificial Intelligence

Artificial Neural Networks

There are problems that are difficult for humans but easy for
computers (e.g. calculating large arithmetic problems).

Then there are problems easy for humans, but difficult for
computers (e.g. recognizing a picture of a person from the

side).

Artificial Intelligence

Artificial Neural Networks

Neural Networks attempt to solve problems that
would normally be easy for humans but hard for
computers!

Let’s start by looking at the simplest Neural network
possible - the perceptron.

Artificial Intelligence

Artificial Neural Networks

A perceptron consists of one or more inputs, a
processor, and a single output.

A perceptron follows the “feed-forward” model,
meaning inputs are sent into the neuron, are
processed, and result in an output.

Artificial Intelligence

Artificial Neural Networks

impulses carried

toward cell body
branches

of axon

dendrites

axon

nucleus terminals

impulses carried
away from cell body

I wo

*@® synapse
axon from a neuron
woTo

cell body

f (Zw,—x,— - b)
Zw,-a:,- +b :

output axon

activation
function

Wao T

Artificial Intelligence

Artificial Neural Networks

Perceptrons consists of:
" input values

= synaptic weights

= 3 bias

= gctivation function

Artificial Intelligence

Artificial Neural Networks

The way it works is as follows: suppose we have inputs
X9, X1, X2, ..., Xn, Where each are assigned a given weight, call
them wy, wi, wy, ..., Wy,

XoWp —+ X1 W1 ~+ XoWo + -+ XnWhp = inWi

Here, the weights represent how strong a given node is.

Artificial Intelligence

Artificial Neural Networks

Given the result of our partial sum, we may now construct
the activation function, which is f QO x;w; + b).

The bias b value brings the activation function up or down.

An activation function helps transforms an input signal to an
output signal.

Artificial Intelligence

Artificial Neural Networks

There are several kinds of activation functions:
" Threshold Activation Function
= Sigmoid Activation Function

= Hyperbolic Tangent Function
= Rectified Linear Units

Artificial Intelligence

Al vs. Machine Learning vs. Deep Learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING
Algorithms with the ability to learn
without being explicitly programmed

DEEP LEARNING

Subset of machine learning
in which artificial neural

networks adapt and learn
from vast amounts of data

Artificial Intelligence

Machine Learning

Machine learning is a method of
data analysis that automates
analytical model building.

Artificial Intelligence

Machine Learning

Using algorithms that iteratively learn from

data, machine learning allows computers to

find hidden insights without being explicitly
programmed where to look.

Data
Acquisition

Artificial Intelligence

Machine Learning

Test

Data
Model
Data l Training & I Model

Cleaning Building . Testing

Model
Deployment

Artificial Intelligence

Supervised Learning

Supervised learning algorithms are trained
using labeled examples, such as an input
where the desired output is known.

Artificial Intelligence
Supervised Learning

The learning algorithm receives a set of inputs along with the
corresponding correct outputs, and the algorithm learns by

comparing its actual output with correct outputs to find
errors.

It then modifies the model accordingly.

Artificial Intelligence

Supervised Learning

Through methods like classification, regression, prediction
and gradient boosting, supervised learning uses patterns to
predict the values of the label on additional unlabeled data.

Supervised learning is commonly used in applications where
historical data predicts likely future events.

Artificial Intelligence

Supervised Learning

For example, it can anticipate when credit card transactions
are likely to be fraudulent or which insurance customer is
likely to file a claim.

Or it can attempt to predict the price of a house based on
different features for houses for which we have historical
price data.

Artificial Intelligence

Unsupervised Learning

Unsupervised learning is used against
data that has no historical labels.

Artificial Intelligence

Unsupervised Learning

The system is not told the "right answer." The algorithm must
figure out what is being shown.

The goal is to explore the data and find some structure
within.

Artificial Intelligence

Unsupervised Learning

Or it can find the main attributes that separate customer
segments from each other.

Popular techniques include self-organizing maps, nearest-

neighbor mapping, k-means clustering and singular value
decom

Artificial Intelligence

Reinforcement Learning

Reinforcement learning is often used for
robotics, gaming and navigation.

Artificial Intelligence

Reinforcement Learning

With reinforcement learning, the algorithm discovers
through trial and error which actions yield the
greatest rewards.

Artificial Intelligence

Reinforcement Learning

This type of learning has three primary components:
the agent (the learner or decision maker), the
environment (everything the agent interacts with)
and actions (what the agent can do.)

Artificial Intelligence

Reinforcement Learning

The objective is for the agent to choose
actions that maximize the expected
reward over a given amount of time.

Artificial Intelligence

Reinforcement Learning

The agent will reach the goal much faster by
following a good policy.

So the goal in reinforcement learning is to
learn the best policy.

Designing Rational Agents

An agent is an entity that perceives and acts.

A rational agent selects actions that
maximize its (expected) utility.

c 2\ G
Characteristics of the percepts, L Semsors 1 — 2
H ° . ercepts -
environment, and action space dictate g‘; o
techniques for selecting rational actions. < -
Actuators - > =
J Actions

|

Pac-Man as an Agent

SCORE: 18
e D\ (T, D\
Agent Environment
Sensors <
Percepts
Actuators Ao G >)

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes

Artificial Intelligence

Bayesian Networks

There are instances which call for the

need to calculate the probability of an

uncertain event or cause based on an
observation.

Artificial Intelligence

Bayesian Networks

Really useful way of doing so is
through graphical models known as
Bayesian Networks.

Artificial Intelligence

Bayesian Networks

A Bayesian network is a probabilistic
graphical model that represent
information about an uncertain

event, cause, or domain.

Artificial Intelligence

Bayesian Networks

This gives us the chance to classify
entities, quantities, or other pieces of
information through observation.

Artificial Intelligence
Bayesian Networks

In order to understand what Bayesian
networks are, we must understand what
they consist of, which is a set of conditional
probability distributions and a directed
acyclic graph.

Artificial Intelligence

Bayesian Networks

Recall, a directed acyclic graph is a directed graph in
which has no directed cycles.

A conditional probability distribution (CPD) is a data
set where the probability of the events being true is
based on another event being true.

Artificial Intelligence

Bayesian Networks

The goal of Bayesian Network is to compute
the CPD of each of the unobserved caused,
supposing there are observed evidences.

Artificial Intelligence

Bayesian Networks

Determine the side effects a drug will cause with a given

patient:

Side effects are negative reactions to medical treatment. Here, we can
represent the probabilistic relationship on the side effects to predict what
drug caused it. Bayesian Networks are useful in this case because they will
observe the symptoms of a patient, and then based on those
observations, predict which drug resulted in the negative reactions.

Difficulty

Letter

Artificial Intelligence

Bayesian Model

Intelligence

This model says there are independent
states difficulty (based on difficulty

of exam) and other is intelligence
(based on intelligence).

Based on difficulty and intelligence, the
student gets a grade and according to
that grade, they get a letter of
recommendation for college.

Applications

Artificial Intelligence

Virtual Reality

Definition of VR: Inducing targeted behavior
in an organism by using artificial sensory
stimulation, while the organism has little or
no awareness of the interference.

Artificial Intelligence

Virtual Reality

Four key components appear in the definition:

Targeted behavior: The organism is having an “experience” that was designed by the creator.
Examples include flying, walking, exploring, watching a movie, and socializing with other
organisms.

Organism: This could be you, someone else, or even another life form such as a fruit fly,
cockroach, fish, rodent, or monkey (scientists have used VR technology on all of these!).

Artificial sensory stimulation: Through the power of engineering, one or more senses of the
organism become co-opted, at least partly, and their ordinary inputs are replaced or enhanced
by artificial stimulation.

Awareness: While having the experience, the organism seems unaware of the interference,
thereby being “fooled” into feeling present in a virtual world. This unawareness leads to a sense
of presence in an altered or alternative world. It is accepted as being natural.

Artificial Intelligence

Virtual Reality

A VR system causes a perceptual illusion to be maintained for
the organism.

Artificial Intelligence

Virtual Reality

We also cannot help wondering whether we are always being fooled, and
some greater reality has yet to reveal itself to us. This problem has
intrigued the greatest philosophers over many centuries. One of the
oldest instances is the Allegory of the Cave, presented by Plato in
Republic. In this, Socrates describes the perspective of people who have
spent their whole lives chained to a cave wall. They face a blank wall and
only see shadows projected onto the walls as people pass by. He explains
that the philosopher is like one of the cave people being finally freed from
the cave to see the true nature of reality, rather than being only observed
through projections.

Artificial Intelligence

Virtual Reality

This idea has been repeated and popularized
throughout history, and also connects deeply
with spirituality and religion.

Artificial Intelligence

Virtual Reality

The basis of the 1999 movie The Matrix. In that story,
machines have fooled the entire human race by connecting to
their brains to a convincing simulated world, while harvesting
their real bodies. The lead character Neo must decide
whether to face the new reality or take a memory-erasing pill

that will allow him to comfortably live in the simulation
without awareness of the ruse.

Artificial Intelligence

Virtual Reality

m-

Artificial Intelligence

Virtual Reality

Immersion means that the users feel that they are part of the virtual world in the
VR scene, as if they are immersed.

Interaction refers to the natural interaction between the user and the virtual

scene. It provides the users with the same feeling as the real world through
feedback.

Imagination refers to the use of multi-dimensional perception information
provided by VR scenes to acquire the same feelings as the real world while
acquiring the feelings that are not available in the real world.

Artificial Intelligence

Virtual Reality

Under normal conditions, the brain (and body parts) control the configuration of sense
organs (eyes, ears, fingertips) as they receive natural stimulation from the surrounding,

physical world.

Configuration Control

-—

““““““ Natural l < 3_1:;) 3

\\'

>

Stimulation Sense Neural Pathways ‘ _‘;/A A
4

- ﬂ".‘ ’__) 5
Organ ' A),
Z é ~

«
A
L

\

b

<
z
&
Y

o — = —

Artificial Intelligence

Virtual Reality

In comparison to the figure before, a VR system “hijacks” each sense by replacing the natural
stimulation with artificial stimulation that is provided by hardware called a display. Using a
computer, a virtual world generator maintains a coherent, virtual world. Appropriate “views”
of this virtual world are rendered to the display.

ST T T T T TS TTTT TSI S Configuration Control

|
|

|
|

| TV
[- Gy
: Virtual . ' | Sense Neural Pathways :%. C/;i /&(
| World > Display - Organ >;~é/ —dre
| — Y
i | Generator : %«
|

|
I

|
l |

SR Rl et L e s Gl PR S R e T o L B M L

Artificial Intelligence

Virtual Reality

Artificial Intelligence

Augmented Reality

Augmented reality (AR) refers to systems in which
most of the visual stimuli are propagated directly
through glass or cameras to the eyes, and some
additional structures, such as text and graphics,

appear to be superimposed onto the user’s world.

Artificial Intelligence

Augmented Reality

Artificial Intelligence

Physiology of Human Vision

Comnea

Posterior chamber Anterior chamber

Fmuitar \ < ‘R (aqueous humour)
fibres _
’k Lens /} \ ~Ciliary muscle

Suspensory
\ ligament

Choroid - Vitreous

humour
Sclera

Optic disc

Optic nerve

blood vessels

Artificial Intelligence

Physiology of Human Vision

Photoreceptors

The retina contains two kinds of photoreceptors for vision:
1) Rods, which are triggered by very low levels of light

2) Cones, which require more light and are designed to
distinguish between colors

Artificial Intelligence

Physiology of Human Auditory System

Inner ear
1

1
' Semicircular
Cochlea canals

— T R s v A T ™R .
Kb A ustachea
. Al v "
FAR IS | A\ ul
‘. . g :
| apes
AR 13
£3 -
i
o ear
Ear canal
I I Ear drum

1
Outer ear

Artificial Intelligence

Robotics

Robots are typically defined as physical agents
that perform a variety of tasks by
manipulating the physical world.

Artificial Intelligence

Robotics

Robots are equipped with effectors like legs,
wheels, arms & grippers. The single purpose
of effectors is to exert physical force on the
environment.

Artificial Intelligence
Robotics

Mostly, today’s robots fall into one of three
primary categories:
= Manipulators

= Mobile Robots
= Mobile Manipulators

Wiz,

Artificial Intelligence

Robotics

Manipulators: Often referred to as robot
arms, manipulators are physically
anchored to their workplace.

Artificial Intelligence

Robotics

Mobile robots: Mobile robots have the ability to
move about using wheels or robotic legs.

= Unmanned Ground Vehicles (UGVs) can drive autonomously on streets,
highways and also off-roads.

= Unmanned Air Vehicles (UAVs aka drones) are commonly used for surveillance,
military operations, crop spraying and even deliveries.

= Autonomous Underwater Vehicles (AUVs) are used in deep-sea explorations
and underwater searches.

Artificial Intelligence

Robotics

Mobile Manipulators: Sometimes referred to as Humanoid
Robots, these typically mimic the human torso. Mobile
manipulators can apply their effectors over a much larger
area than typical manipulators, which are anchored. However
their task is made more difficult since they lack the rigidity
that anchors provide.

Artificial Intelligence

Robotics

Real robots must cope with environments
that are partially observable, stochastic,
dynamic and continuous.

Artificial Intelligence

Robotics

Robotics today brings together several concepts
from Al and Machine Learning like probabilistic state
estimation, perception, unsupervised learning and
reinforcement learning, among others.

Artificial Intelligence

Gaming

Al has come to

video games.

Artificial Intelligence

Gaming

Al needs to understand what a
player does and how a player feels
during the play.

Artificial Intelligence
Gaming

To gauge a player’s in-game experience,
developers use machine learning methods,
such as supervised learning like support
vector machines or neural networks to build
the models of player experience.

Artificial Intelligence

Gaming

Zombies in Call of Duty are a prime example
of how Al is used in video games.

QEO

Artificial Intelligence

Voice Recognition

In order for voice recognition to occur, we
need to convert soundwaves into bits.

The computer then interprets those bits.

Artificial Intelligence

Voice Recognition

Voice recognition is everywhere!

e -l I1||-~‘N|M|‘il 1 \L"“li'll I

*!'!imtﬂ i Nb'“w

Artificial Intelligence

Voice Recognition

It’s in our:

" phones

" game consoles
= watches

= TV’s

= etc.

Artificial Intelligence

Voice Recognition
Ever heard of Amazon’s Echo Dot?

Artificial Intelligence

Voice Recognition

Here’s a visual of how voice recognition
occurs.

Input Output

Sound wave of
me saying “Hello”

Neural Network —> “Hello”

Plain text

Artificial Intelligence

Voice Recognition

Sometimes, we either say letters or words
that sound like another.

In that case, our system will need to
determine what we meant to say based on
what it has heard us say before.

Artificial Intelligence

Voice Recognition

To treat this phenomenon, we can make use
of a recurrent neural network.

A recurrent neural network has a memory
that influences future predictions.

Artificial Intelligence

Voice Recognition

An example of a recurrent neural network

Input Stateful Model Output
H Likelihood
/ saying ‘A’

Likelihood

Recurrent Neural | » e

—_ > saying ‘B

Network
| Likelihood
And so on...
20ms slice
. The model's current state
of audio

influences the next calculation.

Artificial Intelligence
Natural Language Processing

Natural Language Processing, or NLP, is the
sub-field of Al that is focused on enabling
computers to understand and process human
languages.

Artificial Intelligence

Natural Language Processing

Can Computers Understand Language?

Artificial Intelligence

Natural Language Processing

As long as computers have been around,
programmers have been trying to write
programs that understand languages like
English.

Artificial Intelligence
Natural Language Processing

The reason is pretty obvious — humans have been
writing things down for thousands of years and it
would be really helpful if a computer could read and
understand all that data.

Artificial Intelligence

Natural Language Processing

Computers can’t yet truly understand
English in the way that humans do — but
they can already do a lot!

Artificial Intelligence

Natural Language Processing

In certain limited areas, what you can do
with NLP already seems like magic.

Artificial Intelligence

Natural Language Processing

Extracting Meaning from Text is Hard

The process of reading and understanding English is very complex — and that’s not even
considering that English doesn’t follow logical and consistent rules. For example, what does
this news headline mean?

“Environmental regulators grill business owner over illegal
coal fires.”

Are the regulators questioning a business owner about burning coal illegally? Or
are the regulators literally cooking the business owner? As you can see, parsing
English with a computer is going to be complicated.

Artificial Intelligence

Natural Language Processing

Doing anything complicated in machine
learning usually means building a pipeline.

Artificial Intelligence

Natural Language Processing

The idea is to break up your problem into very
small pieces and then use machine learning to
solve each smaller piece separately.

Artificial Intelligence

Natural Language Processing

Then by chaining together several machine learning
models that feed into each other, you can do very
complicated things.

Artificial Intelligence

Natural Language Processing

And that’s exactly the strategy we are
going to use for NLP.

Artificial Intelligence

Natural Language Processing

London is the capital and most populous city of England and
the United Kingdom.

It would be great if a computer could read this text and
understand that London is a city and London is located in
England.

Artificial Intelligence

Natural Language Processing

Word Tokenization

In our pipeline, we will break this sentence into separate words or tokens.
This is called tokenization. This is the result:

VAN (4PN /4

“London”, “is”, “the”, “capital”, “and”, “most”, “populous”, “city”, “of”,
“England”, “and”, “the”, “United”, “Kingdom?”, “.”

Tokenization is easy to do in English. We'll just split apart words whenever
there’s a space between them. And we’ll also treat punctuation marks as
separate tokens since punctuation also has meaning.

Artificial Intelligence

Natural Language Processing

Predicting Parts of Speech for Each Token

Next, we’ll look at each token and try to guess its part of
speech — whether it is a noun, a verb, an adjective and so
on. Knowing the role of each word in the sentence will help
us start to figure out what the sentence is talking about.

Artificial Intelligence

Natural Language Processing

We can do this by feeding each word (and some extra words
around it for context) into a pretrained part-of-speech
classification model:

Input Output

Word: “London” S
r e
— o > “PROPER_NOUN"
Surrounding words: Prediction Model

“is”, “the”, “capital

Artificial Intelligence

Natural Language Processing

The part-of-speech model was originally trained by
feeding it millions of English sentences with each
word’s part of speech already tagged and having it
learn to replicate that behavior.

Artificial Intelligence

Natural Language Processing

Keep in mind that the model is completely based on statistics — it

doesn’t actually understand what the words mean in the same way

that humans do. It just knows how to guess a part of speech based
on similar sentences and words it has seen before.

Artificial Intelligence

Natural Language Processing

After processing the whole sentence, we’ll have a result like
this:

London is the capital and most populous ...

Proper Noun Verb Determiner Noun Conjunction Adverb Adjective

Artificial Intelligence

Natural Language Processing
Text Lemmatization

In English (and most languages), words appear in different
forms. Look at these two sentences:

= | had a pony.
" | had two ponies.

Artificial Intelligence

Natural Language Processing

Both sentences talk about the
noun pony, but they are using different
inflections.

Artificial Intelligence

Natural Language Processing

When working with text in a computer, it is helpful
to know the base form of each word so that you
know that both sentences are talking about the

same concept.

Artificial Intelligence

Natural Language Processing

Otherwise the strings “pony” and
“ponies” look like two totally different
words to a computer.

Artificial Intelligence

Natural Language Processing

In NLP, we call finding this process lemmatization —
figuring out the most basic form or lemma of each
word in the sentence.

Artificial Intelligence

Natural Language Processing

The same thing applies to verbs. We can also lemmatize verbs
by finding their root, unconjugated form. So “I had two
ponies” becomes “I [have] two [pony].”

Artificial Intelligence

Natural Language Processing

Lemmatization is typically done by having a look-up table of
the lemma forms of words based on their part of speech and
possibly having some custom rules to handle words that
you’ve never seen before.

Artificial Intelligence

Natural Language Processing

Here’s what our sentence looks like after lemmatization adds
in the root form of our verb:

London is the capital and most populous ...
be
Proper Noun Verb Determiner Noun Conjunction Adverb Adjective

o:_n

The only change we made was turning “is” into “be”.

Artificial Intelligence

Natural Language Processing

Identifying Stop Words

Next, we want to consider the importance of each word in the sentence.
English has a lot of filler words that appear very frequently like “and”,
“the”, and “a”. When doing statistics on text, these words introduce a lot
of noise since they appear way more frequently than other words. Some
NLP pipelines will flag them as stop words —that is, words that you might
want to filter out before doing any statistical analysis.

Artificial Intelligence

Natural Language Processing

Here’s how our sentence looks with the stop words grayed
out:

London capital populous ...

be

Proper Noun Verb Determiner Noun Conjunction Adverb Adjective

Artificial Intelligence

Natural Language Processing

Stop words are usually identified by just by checking a
hardcoded list of known stop words. But there’s no standard

list of stop words that is appropriate for all applications. The

list of words to ignore can vary depending on your
application.

Artificial Intelligence

Natural Language Processing

Dependency Parsing
The next step is to figure out how all the words in our
sentence relate to each other. This is called dependency

parsing.

Artificial Intelligence

Natural Language Processing

The goal is to build a tree that assigns a single parent word to each word in the
sentence. The root of the tree will be the main verb in the sentence. Here’s what
the beginning of the parse tree will look like for our sentence:

Root

London :cp ital [\
anc

Proper Noun Noun populous

Adject

Adverb

Artificial Intelligence

Natural Language Processing

But we can go one step further. In addition to identifying the parent word of each
word, we can also predict the type of relationship that exists between those two
words:

Artificial Intelligence

Natural Language Processing

This parse tree shows us that the subject of the sentence is the noun “London” and it has a “be” relationship with “capital”.
We finally know something useful — London is a capital! And if we followed the complete parse tree for the sentence
(beyond what is shown), we would even found out that London is the capital of the United Kingdom.

Root

conjunction

attribute
subie:\ / \
/ be det. -

conij.

London J capital \ modifier
N
Verb he ind adv. modifier city
AN
Proper Noun Noun populous
Determiner Conjunction most Noun
Adjective

Adverb

Artificial Intelligence

Natural Language Processing

It’s also important to remember that many
English sentences are ambiguous and just
really hard to parse.

Artificial Intelligence

Natural Language Processing

In those cases, the model will make a guess
based on what parsed version of the sentence
seems most likely but it’s not perfect and
sometimes the model will be embarrassingly
wrong.

Artificial Intelligence

Natural Language Processing

But over time our NLP models will
continue to get better at parsing text in a
sensible way.

Artificial Intelligence

Natural Language Processing

Finding Noun Phrases

So far, we’ve treated every word in our sentence as a
separate entity. But sometimes it makes more sense to group
together the words that represent a single idea or thing. We
can use the information from the dependency parse tree to
automatically group together words that are all talking about

the same thing.

Artificial Intelligence

Natural Language Processing

For example, instead of this:

London is the capital and most populous ...
be
Proper Noun Verb Determiner Noun Conjunction Adverb Adjective

We can group the noun phrases to generate this:

London the capital most populous city ...
be

Proper Noun Verb Noun Conjunction Noun

Artificial Intelligence
Natural Language Processing

Whether or not we do this step depends on our end goal. But

it’s often a quick and easy way to simplify the sentence if we

don’t need extra detail about which words are adjectives and
instead care more about extracting complete ideas.

Artificial Intelligence

Natural Language Processing

Named Entity Recognition (NER)

Now that we’ve done all that hard work, we can finally move
beyond grade-school grammar and start actually extracting
ideas.

Artificial Intelligence

Natural Language Processing

In our sentence, we have the following nouns:

m is theMond most populous ochmd L - United Kingdom

Artificial Intelligence
Natural Language Processing

Some of these nouns present real things in the world.

For example, “London”, “England” and “United
Kingdom” represent physical places on a map.

Artificial Intelligence

Natural Language Processing

It would be nice to be able to detect that!
With that information, we could automatically
extract a list of real-world places mentioned
in a document using NLP.

Artificial Intelligence

Natural Language Processing

The goal of Named Entity Recognition, or NER, is to detect and label these nouns
with the real-world concepts that they represent. Here’s what our sentence looks
like after running each token through our NER tagging model:

m is the capital and most populous city ofMand 1 ,1-4United Kingdom

Geographic Geographic Geographic
Entity Entity Entity

Artificial Intelligence

Natural Language Processing

But NER systems aren’t just doing a
simple dictionary lookup.

Artificial Intelligence

Natural Language Processing

Instead, they are using the context of how a word
appears in the sentence and a statistical model to
guess which type of noun a word represents.

Artificial Intelligence

Natural Language Processing

A good NER system can tell the difference between
“Brooklyn Decker” the person and the place
“Brooklyn” using context clues.

Artificial Intelligence

Natural Language Processing

Here are just some of the kinds of objects that a typical NER system can
tag:

= People’s names

= Company names

= Geographic locations (Both physical and political)

= Product names

= Dates and times

= Amounts of money

= Names of events

Artificial Intelligence

Natural Language Processing

If we had more than one sentence, we would have
to consider the idea that English is full of pronouns
— words like he, she, and it. These are shortcuts that
we use instead of writing out names over and over in
each sentence.

Artificial Intelligence

Natural Language Processing

Humans can keep track of what these words
represent based on context. But our NLP model
doesn’t know what pronouns mean because it only
examines one sentence at a time.

Artificial Intelligence

Natural Language Processing

One way to dodge this is to use goal of coreference
resolution, which figures out a mapping by tracking
pronouns across sentences. We want to figure out all
the words that are referring to the same entity.

Artificial Intelligence

Natural Language Processing

With coreference information combined with
the parse tree and named entity information,
we should be able to extract a lot of
information out of this document!

Artificial Intelligence

Natural Language Processing

Coreference resolution is one of the
most difficult steps in our pipeline to
implement.

Artificial Intelligence

Natural Language Processing

It’s even more difficult than sentence parsing.
Recent advances in deep learning have
resulted in new approaches that are more
accurate, but it isn’t perfect yet.

Input

Text
Document

Artificial Intelligence

Natural Language Processing

Natural Language Processing Pipeline

Model of NLP Pipeline

Output

Sentence
Segmentation

Tokenization

Parts-of-
Speech

Tagging

Lemmatization

Stop
Words

Dependency
Parsing

Noun
Phrases

Named
Entity
Recognition

Data Structures
——» Representing
Parsed Text

Coreference
Resolution

Note, we did not have to use sentence segmentation and coreference resolution because we did not have multiple sentences.

Sentence segmentation breaks a paragraph of sentences into separate, single sentences.

CONGRATULATIONS

Course completed \D CC

YOU’VE COMPLETED THE ENTIRE COURSE!

CONGRATULATIONS

Course completed

Now we will create a game. This game will be a first-person
shooter, and we will use artificial intelligence and unreal
gaming engine to build it!

+//

Thank You ©

